Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2015

Open Access 01-12-2015 | Research

Non-linear significant relationship between use of glycopeptides and isolation of vancomycin-resistant Enterococcus species in a university hospital setting

Authors: Christina Forstner, Magda Diab-Elschahawi, Danijel Kivaranovic, Wolfgang Graninger, Dieter Mitteregger, Maria Macher, Thomas Wrba, Elisabeth Presterl

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2015

Login to get access

Abstract

Background

Emergence of colonization and infection with vancomycin-resistant enterococci (VRE) has become a worldwide challenge. To investigate whether the increasing incidence of VRE isolation can be correlated with use of glycopeptides in the hospital setting, we conducted a hospital-wide two-year study in the university hospital of Vienna.

Methods

Within the period from January 2011 through December 2012 all patients with isolation of invasive or non-invasive VRE were retrospectively included. Specialty-specific data concerning the consumption of vancomycin and teicoplanin, fluoroquinolones and third generation cephalosporins in defined daily doses (DDDs) from June 2010 through May 2012 were extracted from the hospital pharmacy computer system. To assess the relationship between the usage of those antibiotics and the incidence of VRE (VRE-rate per 10 000 patients) a Poisson regression was performed.

Findings

In the study period 266 patients were colonized or infected with VRE. Specialty-specific VRE isolation was as follows: general surgical units (44 patients), bone marrow transplant unit (35 patients), general medical units (33 patients), cardiothoracic surgery (27 patients), nephrology (26 patients), haematooncology (22 patients), gastroenterology (17 patients), urology (17 patients), and the infectious diseases unit (11 patients). Hospital-wide consumption of glycopeptides was higher for teicoplanin than for vancomycin (26 242 versus 8677 DDDs). Specialty-specific VRE incidence significantly increased with the use of glycopeptides, fluoroquinolones or third generation cephalosporins (p < 0.001). The results of the Poisson regression for vancomycin (p = 0.0018) and teicoplanin (p < 0.0001) separately were both highly significant. Spearman’s correlation coefficient indicated a strong correlation between the two variables (rho = 0.8).

Conclusion

Overall usage of glycopeptides, fluoroquinolones or third generation cephalosporins contributed to the emergence of VRE in the hospital setting.
Literature
2.
go back to reference Rivera AM, Boucher HW. Current concepts in antimicrobial therapy against select gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci. Mayo Clin Proc. 2011;86:1230–43.PubMedCentralPubMedCrossRef Rivera AM, Boucher HW. Current concepts in antimicrobial therapy against select gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci. Mayo Clin Proc. 2011;86:1230–43.PubMedCentralPubMedCrossRef
3.
go back to reference Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990-May 1999. Am J Infect Control. 1999;27:520–32.CrossRef Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990-May 1999. Am J Infect Control. 1999;27:520–32.CrossRef
4.
go back to reference McCracken M, Wong A, Mitchell R, et al. Molecular epidemiology of vancomycin-resistant enterococcal bacteraemia: results from the Canadian Nosocomial Infection Surveillance Program, 1999–2009. J Antimicrob Chemother. 2013;68:1505–9.PubMedCrossRef McCracken M, Wong A, Mitchell R, et al. Molecular epidemiology of vancomycin-resistant enterococcal bacteraemia: results from the Canadian Nosocomial Infection Surveillance Program, 1999–2009. J Antimicrob Chemother. 2013;68:1505–9.PubMedCrossRef
5.
go back to reference European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2012. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2012.
6.
go back to reference Patel R. Clinical impact of vancomycin-resistant enterococci. J Antimicrob Chemother. 2003;51 Suppl S3:iii13–21. Patel R. Clinical impact of vancomycin-resistant enterococci. J Antimicrob Chemother. 2003;51 Suppl S3:iii13–21.
7.
go back to reference Novais C, Freitas AR, Silveira E, Antunes P, Silva R, Coque TM, et al. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. J Antimicrob Chemother. 2013;68:2746–54.PubMedCrossRef Novais C, Freitas AR, Silveira E, Antunes P, Silva R, Coque TM, et al. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. J Antimicrob Chemother. 2013;68:2746–54.PubMedCrossRef
8.
go back to reference European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014.
11.
go back to reference Swenson JM, Patel JP, Jorgensen JH. Special phenotypic methods for detecting antibacterial resistance. In: Murray PR et al. (eds.), Manual of Clinical Microbiology, 9th edition, 2007; 1:21173–92. Swenson JM, Patel JP, Jorgensen JH. Special phenotypic methods for detecting antibacterial resistance. In: Murray PR et al. (eds.), Manual of Clinical Microbiology, 9th edition, 2007; 1:21173–92.
13.
go back to reference Kritsotakis EI, Christidou A, Roumbelaki M, Tselentis Y, Gikas A. The dynamic relationship between antibiotic use and the incidence of vancomycin-resistant Enterococcus: time-series modeling of 7-year surveillance data in a tertiary-care hospital. Clin Microbiol Infect. 2008;14:747–54.PubMedCrossRef Kritsotakis EI, Christidou A, Roumbelaki M, Tselentis Y, Gikas A. The dynamic relationship between antibiotic use and the incidence of vancomycin-resistant Enterococcus: time-series modeling of 7-year surveillance data in a tertiary-care hospital. Clin Microbiol Infect. 2008;14:747–54.PubMedCrossRef
14.
go back to reference White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48:817–38.CrossRef White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48:817–38.CrossRef
15.
go back to reference Vydra J, Shanley RM, George I, Ustun C, Smith AR, Weisdorf DJ, et al. Enterococcal bacteremia is associated with increased risk of mortality in recipients of allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:764–70.PubMedCentralPubMedCrossRef Vydra J, Shanley RM, George I, Ustun C, Smith AR, Weisdorf DJ, et al. Enterococcal bacteremia is associated with increased risk of mortality in recipients of allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:764–70.PubMedCentralPubMedCrossRef
16.
go back to reference Peel T, Cheng AC, Spelman T, Huysmans M, Spelman D. Differing risk factors for vancomycin-resistant and vancomycin-sensitive enterococcal bacteraemia. Clin Microbiol Infect. 2012;18:388–94.PubMedCrossRef Peel T, Cheng AC, Spelman T, Huysmans M, Spelman D. Differing risk factors for vancomycin-resistant and vancomycin-sensitive enterococcal bacteraemia. Clin Microbiol Infect. 2012;18:388–94.PubMedCrossRef
17.
go back to reference McKinnell JA, Kunz DF, Chamot E, Patel M, Shirley RM, Moser SA, et al. Association between vancomycin-resistant Enterococci bacteremia and ceftriaxone usage. Infect Control Hosp Epidemiol. 2012;33:718–24.PubMedCrossRef McKinnell JA, Kunz DF, Chamot E, Patel M, Shirley RM, Moser SA, et al. Association between vancomycin-resistant Enterococci bacteremia and ceftriaxone usage. Infect Control Hosp Epidemiol. 2012;33:718–24.PubMedCrossRef
18.
go back to reference de Bruin MA, Riley LW. Does vancomycin prescribing intervention affect vancomycin-resistant enterococcus infection and colonization in hospitals? A systematic review. BMC Infect Dis. 2007;7:24.PubMedCentralPubMedCrossRef de Bruin MA, Riley LW. Does vancomycin prescribing intervention affect vancomycin-resistant enterococcus infection and colonization in hospitals? A systematic review. BMC Infect Dis. 2007;7:24.PubMedCentralPubMedCrossRef
19.
go back to reference Yoon YK, Lee SE, Lee J, Kim HJ, Kim JY, Park DW, et al. Risk factors for prolonged carriage of vancomycin-resistant Enterococcus faecium among patients in intensive care units: a case–control study. J Antimicrob Chemother. 2011;66:1831–8.PubMedCrossRef Yoon YK, Lee SE, Lee J, Kim HJ, Kim JY, Park DW, et al. Risk factors for prolonged carriage of vancomycin-resistant Enterococcus faecium among patients in intensive care units: a case–control study. J Antimicrob Chemother. 2011;66:1831–8.PubMedCrossRef
20.
go back to reference Marcel JP, Alfa M, Baquero F, Etienne J, Goossens H, Harbarth S, et al. Healthcare-associated infections: think globally, act locally. Clin Microbiol Infect. 2008;14:895–907.PubMedCrossRef Marcel JP, Alfa M, Baquero F, Etienne J, Goossens H, Harbarth S, et al. Healthcare-associated infections: think globally, act locally. Clin Microbiol Infect. 2008;14:895–907.PubMedCrossRef
21.
go back to reference Forstner C, Dungl C, Tobudic S, Mitteregger D, Lagler H, Burgmann H. Predictors of clinical and microbiological treatment failure in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: a retrospective cohort study in a region with low MRSA prevalence. Clin Microbiol Infect. 2013;19:E291–7.PubMedCrossRef Forstner C, Dungl C, Tobudic S, Mitteregger D, Lagler H, Burgmann H. Predictors of clinical and microbiological treatment failure in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: a retrospective cohort study in a region with low MRSA prevalence. Clin Microbiol Infect. 2013;19:E291–7.PubMedCrossRef
22.
go back to reference Shin JW, Yong D, Kim MS, Chang KH, Lee K, Kim JM, et al. Sudden increase of vancomycin-resistant enterococcal infections in a Korean tertiary care hospital: possible consequences of increased use of oral vancomycin. J Infect Chemother. 2003;9:62–7.PubMedCrossRef Shin JW, Yong D, Kim MS, Chang KH, Lee K, Kim JM, et al. Sudden increase of vancomycin-resistant enterococcal infections in a Korean tertiary care hospital: possible consequences of increased use of oral vancomycin. J Infect Chemother. 2003;9:62–7.PubMedCrossRef
23.
go back to reference Nerandzic MM, Mullane K, Miller MA, Babakhani F, Donskey CJ. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis. 2012;55 Suppl 2:S121–6.PubMedCentralPubMedCrossRef Nerandzic MM, Mullane K, Miller MA, Babakhani F, Donskey CJ. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis. 2012;55 Suppl 2:S121–6.PubMedCentralPubMedCrossRef
Metadata
Title
Non-linear significant relationship between use of glycopeptides and isolation of vancomycin-resistant Enterococcus species in a university hospital setting
Authors
Christina Forstner
Magda Diab-Elschahawi
Danijel Kivaranovic
Wolfgang Graninger
Dieter Mitteregger
Maria Macher
Thomas Wrba
Elisabeth Presterl
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2015
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-015-0064-5

Other articles of this Issue 1/2015

Antimicrobial Resistance & Infection Control 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine