Skip to main content
Top
Published in: Perioperative Medicine 1/2019

Open Access 01-12-2019 | Research

Intravenous lidocaine infusion as a component of multimodal analgesia for colorectal surgery—measurement of plasma levels

Authors: E. Greenwood, S. Nimmo, H. Paterson, N. Homer, I. Foo

Published in: Perioperative Medicine | Issue 1/2019

Login to get access

Abstract

Background

Growing evidence suggests that intravenous lidocaine as a component of multimodal analgesia improves recovery after major colorectal surgery. There is little published data regarding ideal dosing and target plasma concentration in this context, and we wanted to establish our dosing schedule was safe by measuring blood levels of lidocaine.

Methods

We measured the plasma lidocaine concentration of 32 patients at 30 min, 6 h and 12 h after starting intravenous lidocaine infusion for analgesia after major colorectal surgery. Patients received a bolus of 1.5 mg kg−1 over 20 min at the time of induction of anaesthesia. This was followed by a continuous infusion of 2% w/v lidocaine at 3 ml hr−1 (60 mg hr−1) for patients weighing up to 70 kg and 6 ml hr−1 (120 mg hr−1) for patients weighing over 70 kg, using actual body weight.

Results

The overall mean plasma lidocaine concentration was 4.0 μg ml−1 (range 0.6–12.3 μg ml−1). In patients treated with the higher infusion dose, the mean concentration was 4.6 μg ml−1 compared to 3.2 μg ml−1 in those patients on the lower dose. Mean levels were higher at 6 h than 30 min and higher again at 12 h. There were no adverse events or reports of symptoms of local anaesthetic toxicity.

Conclusions

Whilst there were no signs or symptoms of lidocaine toxicity in our patients, there was a wide range of plasma concentrations including some over 10 μg ml−1; a level above which symptoms of toxicity may be expected. We have changed our dosing protocol to using ideal rather than actual body weight based on these results.
Literature
go back to reference Bromage PR. Concentrations of lignocaine in the blood after intravenous, intramuscular, epidural and endotracheal administration. Anaesthesia. 1961;16:4.CrossRef Bromage PR. Concentrations of lignocaine in the blood after intravenous, intramuscular, epidural and endotracheal administration. Anaesthesia. 1961;16:4.CrossRef
go back to reference Clive-Lowe SG, Spence PW, North J. Succinylcholine and lignocaine by continuous intravenous drip, report of 1000 administrations. Anaesthesia. 1954;9:2.CrossRef Clive-Lowe SG, Spence PW, North J. Succinylcholine and lignocaine by continuous intravenous drip, report of 1000 administrations. Anaesthesia. 1954;9:2.CrossRef
go back to reference deOliveira CMB, Issy AM, Sakata RK. Intraoperative intravenous lidocaine. Rev Bras Anestesiol. 2010;60:325–33. deOliveira CMB, Issy AM, Sakata RK. Intraoperative intravenous lidocaine. Rev Bras Anestesiol. 2010;60:325–33.
go back to reference Eipe N, Gupta S, Penning J. Intravenous lidocaine for acute pain: an evidence based clinical update. BJA Education. 2016;16:292–8.CrossRef Eipe N, Gupta S, Penning J. Intravenous lidocaine for acute pain: an evidence based clinical update. BJA Education. 2016;16:292–8.CrossRef
go back to reference Fearon KHC, Ljungqvist O, Von Meyenfeldt M, et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr. 2005;24:466–77.CrossRef Fearon KHC, Ljungqvist O, Von Meyenfeldt M, et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr. 2005;24:466–77.CrossRef
go back to reference Foldes FF, Malloy R, McNall PG, Koukal LR. Comparison of toxicity of intravenously given local anaesthetic agents in man. JAMA. 1960;172(14):1493–8.CrossRef Foldes FF, Malloy R, McNall PG, Koukal LR. Comparison of toxicity of intravenously given local anaesthetic agents in man. JAMA. 1960;172(14):1493–8.CrossRef
go back to reference Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, Hering W. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anaesth Analg. 2004;98:1050–5.CrossRef Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, Hering W. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anaesth Analg. 2004;98:1050–5.CrossRef
go back to reference Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58:280–6.CrossRef Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58:280–6.CrossRef
go back to reference LeLorier J, Grenon D, Latour Y, Caille G, Dumont G, Brosseau A, Solignac A. Pharmacokinetics of lidocaine after prolonged intravenous infusion in uncomplicated myocardial infarction. Ann Int Med. 1977;87(6):700–6.CrossRef LeLorier J, Grenon D, Latour Y, Caille G, Dumont G, Brosseau A, Solignac A. Pharmacokinetics of lidocaine after prolonged intravenous infusion in uncomplicated myocardial infarction. Ann Int Med. 1977;87(6):700–6.CrossRef
go back to reference Rimback G, Cassuto J, Tolleson PO. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth Analg. 1990;70:414–9.CrossRef Rimback G, Cassuto J, Tolleson PO. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth Analg. 1990;70:414–9.CrossRef
go back to reference Swenson BR, Gottschalk A, Wells LT, Rowlingson JC, Thompson PW, Barclay M, Sawyer RG, Friel CM, Foley E, Durieux ME. Intravenous lidocaine is as effective as epidural bupivacaine in reducing ileus duration, hospital stay, and pain after open colon resection. Region Anaesth Pain Med. 2010;35:370–6.CrossRef Swenson BR, Gottschalk A, Wells LT, Rowlingson JC, Thompson PW, Barclay M, Sawyer RG, Friel CM, Foley E, Durieux ME. Intravenous lidocaine is as effective as epidural bupivacaine in reducing ileus duration, hospital stay, and pain after open colon resection. Region Anaesth Pain Med. 2010;35:370–6.CrossRef
go back to reference Tan M, Law LSC, Gan TJ. Optimising pain management to facilitate enhanced recovery after surgery pathways. Can J Anesth. 2015;62:203–18.CrossRef Tan M, Law LSC, Gan TJ. Optimising pain management to facilitate enhanced recovery after surgery pathways. Can J Anesth. 2015;62:203–18.CrossRef
go back to reference Ventham NT, Kennedy ED, Brady RR, Paterson HM, Speake D, Foo I, Fearon KC. Efficacy of intravenous lidocaine for postoperative analgesia following laparoscopic surgery: a meta-analysis. World J Surg. 2015;39:2220–34.CrossRef Ventham NT, Kennedy ED, Brady RR, Paterson HM, Speake D, Foo I, Fearon KC. Efficacy of intravenous lidocaine for postoperative analgesia following laparoscopic surgery: a meta-analysis. World J Surg. 2015;39:2220–34.CrossRef
go back to reference Weibel S, Jetling Y, Pace NL, Helf A, Eberhart LHJ, Hahnenkamp A, Hollmann LW, Poepping DM, Schnabel A, Kranke P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Syst Rev. 2018. Weibel S, Jetling Y, Pace NL, Helf A, Eberhart LHJ, Hahnenkamp A, Hollmann LW, Poepping DM, Schnabel A, Kranke P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Syst Rev. 2018.
go back to reference Weinberg L, Peake B, Tan C, Nikfarjam M. Pharmacokinetics and pharmacodynamics of lignocaine: a review. World J Anesthesiol. 2015;4(2):17–29.CrossRef Weinberg L, Peake B, Tan C, Nikfarjam M. Pharmacokinetics and pharmacodynamics of lignocaine: a review. World J Anesthesiol. 2015;4(2):17–29.CrossRef
Metadata
Title
Intravenous lidocaine infusion as a component of multimodal analgesia for colorectal surgery—measurement of plasma levels
Authors
E. Greenwood
S. Nimmo
H. Paterson
N. Homer
I. Foo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Perioperative Medicine / Issue 1/2019
Electronic ISSN: 2047-0525
DOI
https://doi.org/10.1186/s13741-019-0112-4

Other articles of this Issue 1/2019

Perioperative Medicine 1/2019 Go to the issue