Skip to main content
Top
Published in: Perioperative Medicine 1/2018

Open Access 01-12-2018 | Research

Intraoperative oxygenation in adult patients undergoing surgery (iOPS): a retrospective observational study across 29 UK hospitals

Authors: Clare M. Morkane, Helen McKenna, Andrew F. Cumpstey, Alex H. Oldman, Michael P. W. Grocott, Daniel S. Martin, Pan London Perioperative Audit and Research Network (PLAN)

Published in: Perioperative Medicine | Issue 1/2018

Login to get access

Abstract

Background

Considerable controversy remains about how much oxygen patients should receive during surgery. The 2016 World Health Organization (WHO) guidelines recommend that intubated patients receive a fractional inspired oxygen concentration (FIO2) of 0.8 throughout abdominal surgery to reduce the risk of surgical site infection. However, this recommendation has been widely criticised by anaesthetists and evidence from other clinical contexts has suggested that giving a high concentration of oxygen might worsen patient outcomes. This retrospective multi-centre observational study aimed to ascertain intraoperative oxygen administration practice by anaesthetists across parts of the UK.

Methods

Patients undergoing general anaesthesia with an arterial catheter in situ across hospitals affiliated with two anaesthetic trainee audit networks (PLAN, SPARC) were eligible for inclusion unless undergoing cardiopulmonary bypass. Demographic and intraoperative oxygenation data, haemoglobin saturation and positive end-expiratory pressure were retrieved from anaesthetic charts and arterial blood gases (ABGs) over five consecutive weekdays in April and May 2017.

Results

Three hundred seventy-eight patients from 29 hospitals were included. Median age was 66 years, 205 (54.2%) were male and median ASA grade was 3. One hundred eight (28.6%) were emergency cases. An anticipated difficult airway or raised BMI was documented preoperatively in 31 (8.2%) and 45 (11.9%) respectively. Respiratory or cardiac comorbidity was documented in 103 (27%) and 83 (22%) respectively. SpO2 < 96% was documented in 83 (22%) patients, with 7 (1.9%) patients desaturating < 88% at any point intraoperatively. The intraoperative FIO2 ranged from 0.25 to 1.0, and median PaO2/FIO2 ratios for the first four arterial blood gases taken in each case were 24.6/0.5, 23.4/0.49, 25.7/0.46 and 25.4/0.47 respectively.

Conclusions

Intraoperative oxygenation currently varies widely. An intraoperative FIO2 of 0.5 currently represents standard intraoperative practice in the UK, with surgical patients often experiencing moderate levels of hyperoxaemia. This differs from both WHO’s recommendation of using an FIO2 of 0.8 intraoperatively, and also, the value most previous interventional oxygen therapy trials have used to represent standard care (typically FIO2 = 0.3). These findings should be used to aid the design of future intraoperative oxygen studies.
Literature
go back to reference Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de JS, de VF, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.CrossRefPubMed Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de JS, de VF, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.CrossRefPubMed
go back to reference Applegate RL, Dorotta IL, Wells B, Juma D, Applegate PM. The relationship between oxygen reserve index and arterial partial pressure of oxygen during surgery. Anesth Analg. 2016;123(3):626–33.CrossRefPubMedPubMedCentral Applegate RL, Dorotta IL, Wells B, Juma D, Applegate PM. The relationship between oxygen reserve index and arterial partial pressure of oxygen during surgery. Anesth Analg. 2016;123(3):626–33.CrossRefPubMedPubMedCentral
go back to reference Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. BJA Br J Anaesth. 2017;119(1):16–8.CrossRefPubMed Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. BJA Br J Anaesth. 2017;119(1):16–8.CrossRefPubMed
go back to reference Chu DK, Kim LH-Y, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693–705.CrossRefPubMed Chu DK, Kim LH-Y, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693–705.CrossRefPubMed
go back to reference Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(16):711.CrossRefPubMedPubMedCentral Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(16):711.CrossRefPubMedPubMedCentral
go back to reference Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity. N Engl J Med. 1983;309(15):878–83.CrossRefPubMed Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity. N Engl J Med. 1983;309(15):878–83.CrossRefPubMed
go back to reference de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort PH, et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156.CrossRefPubMedPubMedCentral de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort PH, et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156.CrossRefPubMedPubMedCentral
go back to reference Devitt JH, Rapanos T, Kurrek M, Cohen MM, Shaw M. The anesthetic record: accuracy and completeness. Can J Anaesth J Can Anesth. 1999;46(2):122–8.CrossRef Devitt JH, Rapanos T, Kurrek M, Cohen MM, Shaw M. The anesthetic record: accuracy and completeness. Can J Anaesth J Can Anesth. 1999;46(2):122–8.CrossRef
go back to reference Eastwood G, Bellomo R, Bailey M, Taori G, Pilcher D, Young P, et al. Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med. 2012;38(1):91–8.CrossRefPubMed Eastwood G, Bellomo R, Bailey M, Taori G, Pilcher D, Young P, et al. Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med. 2012;38(1):91–8.CrossRefPubMed
go back to reference Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiol J Am Soc Anesthesiol. 2003;98(1):28–33. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiol J Am Soc Anesthesiol. 2003;98(1):28–33.
go back to reference Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158(3):371–7.CrossRefPubMed Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158(3):371–7.CrossRefPubMed
go back to reference Kücükakin B, Gögenur I, Reiter RJ, Rosenberg J. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J Surg Res. 2009;152(2):338–47.CrossRefPubMed Kücükakin B, Gögenur I, Reiter RJ, Rosenberg J. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J Surg Res. 2009;152(2):338–47.CrossRefPubMed
go back to reference Kurz A, Kopyeva T, Suliman I, Podolyak A, You J, Lewis B, et al. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117–26.CrossRefPubMed Kurz A, Kopyeva T, Suliman I, Podolyak A, You J, Lewis B, et al. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117–26.CrossRefPubMed
go back to reference Martin DS, Grocott MPW. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70(5):522–7.CrossRefPubMed Martin DS, Grocott MPW. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70(5):522–7.CrossRefPubMed
go back to reference McNulty PH, King N, Scott S, Hartman G, McCann J, Kozak M, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol - Heart Circ Physiol. 2005;288(3):H1057–62.CrossRefPubMed McNulty PH, King N, Scott S, Hartman G, McCann J, Kozak M, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol - Heart Circ Physiol. 2005;288(3):H1057–62.CrossRefPubMed
go back to reference Meyhoff CS, Jorgensen LN, Wetterslev J, Christensen KB, Rasmussen LS, PROXI Trial Group. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth Analg 2012;115(4):849–854. Meyhoff CS, Jorgensen LN, Wetterslev J, Christensen KB, Rasmussen LS, PROXI Trial Group. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth Analg 2012;115(4):849–854.
go back to reference Myles PS, Kurz A. Supplemental oxygen and surgical site infection: getting to the truth. BJA Br J Anaesth. 2017;119(1):13–5.CrossRefPubMed Myles PS, Kurz A. Supplemental oxygen and surgical site infection: getting to the truth. BJA Br J Anaesth. 2017;119(1):13–5.CrossRefPubMed
go back to reference Reinhart K, Bloos F, König F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99(3):690–4.CrossRefPubMed Reinhart K, Bloos F, König F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99(3):690–4.CrossRefPubMed
go back to reference Rogerson D, Williams JP, Yates S, Rogers E. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications. Eur J Anaesthesiol. 2017;34(8):492–507.CrossRef Rogerson D, Williams JP, Yates S, Rogers E. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications. Eur J Anaesthesiol. 2017;34(8):492–507.CrossRef
go back to reference Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, MF MV, Gätke MR, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. BJA Br J Anaesth. 2017;119(1):140–9.CrossRefPubMed Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, MF MV, Gätke MR, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. BJA Br J Anaesth. 2017;119(1):140–9.CrossRefPubMed
go back to reference Sury MRJ, Palmer JHMG, Cook TM, Pandit JJ, Mahajan RP. The state of UK anaesthesia: a survey of National Health Service activity in 2013. BJA Br J Anaesth. 2014;113(4):575–84.CrossRefPubMed Sury MRJ, Palmer JHMG, Cook TM, Pandit JJ, Mahajan RP. The state of UK anaesthesia: a survey of National Health Service activity in 2013. BJA Br J Anaesth. 2014;113(4):575–84.CrossRefPubMed
Metadata
Title
Intraoperative oxygenation in adult patients undergoing surgery (iOPS): a retrospective observational study across 29 UK hospitals
Authors
Clare M. Morkane
Helen McKenna
Andrew F. Cumpstey
Alex H. Oldman
Michael P. W. Grocott
Daniel S. Martin
Pan London Perioperative Audit and Research Network (PLAN)
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Perioperative Medicine / Issue 1/2018
Electronic ISSN: 2047-0525
DOI
https://doi.org/10.1186/s13741-018-0098-3

Other articles of this Issue 1/2018

Perioperative Medicine 1/2018 Go to the issue