Skip to main content
Top
Published in: Transplantation Research 1/2015

Open Access 01-12-2015 | Review

Skin cancer in solid organ transplant recipients: are mTOR inhibitors a game changer?

Author: Edward K Geissler

Published in: Transplantation Research | Issue 1/2015

Login to get access

Abstract

While immunosuppressive agents are necessary to prevent the rejection of transplanted organs, and are a great medical success story for protecting against early allograft loss, graft and patient survival over the long term are diminished by side effects from these same drugs. One striking long-term side effect is a high rate of skin cancer development. The skin cancers that develop in transplant recipients tend to be numerous, as well as particularly aggressive, and are therefore a major contributor to morbidity and mortality in transplant recipients. An apparent reason for the high incidence of skin cancer likely relates to suppression of immune surveillance mechanisms, but other more direct effects of certain immunosuppressive drugs are also bound to contribute to cancers of UV-exposed skin. However, over the past few years, evidence has emerged to suggest that one class of immunosuppressants, mammalian target of rapamycin (mTOR) inhibitors, could potentially inhibit skin tumour formation through a number of mechanisms that are still being studied intensively today. Therefore, in light of the high skin cancer incidence in transplant recipients, it follows that clinical trials have been conducted to determine if mTOR inhibitors can significantly reduce these post-transplant skin malignancies. Here, the problem of post-transplant skin cancer will be briefly reviewed, along with the possible mechanisms contributing to this problem, followed by an overview of the relevant clinical trial results using mTOR inhibitors.
Literature
1.
go back to reference Penn I. Occurrence of cancers in immunosuppressed organ transplant recipients. Clin Transplant. 1998;147–58 Penn I. Occurrence of cancers in immunosuppressed organ transplant recipients. Clin Transplant. 1998;147–58
2.
3.
go back to reference Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348:1681–91.CrossRefPubMed Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348:1681–91.CrossRefPubMed
4.
go back to reference Euvrard S, Kanitakis J, Decullier E, Butnaru AC, Lefrancois N, Boissonnat P, et al. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation. 2006;81:1093–100.CrossRefPubMed Euvrard S, Kanitakis J, Decullier E, Butnaru AC, Lefrancois N, Boissonnat P, et al. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation. 2006;81:1093–100.CrossRefPubMed
5.
go back to reference Wisgerhof HC, Edelbroek JR, de Fijter JW, Haasnoot GW, Claas FH, Willemze R, et al. Subsequent squamous- and basal-cell carcinomas in kidney-transplant recipients after the first skin cancer: cumulative incidence and risk factors. Transplantation. 2010;89:1231–8.CrossRefPubMed Wisgerhof HC, Edelbroek JR, de Fijter JW, Haasnoot GW, Claas FH, Willemze R, et al. Subsequent squamous- and basal-cell carcinomas in kidney-transplant recipients after the first skin cancer: cumulative incidence and risk factors. Transplantation. 2010;89:1231–8.CrossRefPubMed
6.
go back to reference Lindelöf B, Sigurgeirsson B, Gäbel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143:513–9.PubMed Lindelöf B, Sigurgeirsson B, Gäbel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143:513–9.PubMed
7.
go back to reference Mertz KD, Proske D, Kettelhack N, Kegel C, Keusch G, Schwarz A, et al. Basal cell carcinoma in a series of renal transplant recipients: epidemiology and clinicopathologic features. Int J Dermatol. 2010;49:385–9.CrossRefPubMed Mertz KD, Proske D, Kettelhack N, Kegel C, Keusch G, Schwarz A, et al. Basal cell carcinoma in a series of renal transplant recipients: epidemiology and clinicopathologic features. Int J Dermatol. 2010;49:385–9.CrossRefPubMed
8.
go back to reference Kanitakis J, Alhaj-Ibrahim L, Euvrard S, Claudy A. Basal cell carcinomas developing in solid organ transplant recipients: clinicopathologic study of 176 cases. Arch Dermatol. 2003;139:1133–7.CrossRefPubMed Kanitakis J, Alhaj-Ibrahim L, Euvrard S, Claudy A. Basal cell carcinomas developing in solid organ transplant recipients: clinicopathologic study of 176 cases. Arch Dermatol. 2003;139:1133–7.CrossRefPubMed
9.
go back to reference Buell JF, Trofe J, Hanaway MJ, Beebe TM, Gross TG, Alloway RR, et al. Immunosuppression and Merkel cell cancer. Transplant Proc. 2002;34:1780–1.CrossRefPubMed Buell JF, Trofe J, Hanaway MJ, Beebe TM, Gross TG, Alloway RR, et al. Immunosuppression and Merkel cell cancer. Transplant Proc. 2002;34:1780–1.CrossRefPubMed
10.
go back to reference Penn I. Cancers in renal transplant recipients. Adv Ren Replace Ther. 2000;7:147–56.PubMed Penn I. Cancers in renal transplant recipients. Adv Ren Replace Ther. 2000;7:147–56.PubMed
11.
go back to reference Hollenbeak CS, Todd MM, Billingsley EM, Harper G, Dyer AM, Lengerich EJ. Increased incidence of melanoma in renal transplantation recipients. Cancer. 2005;104:1962–7.CrossRefPubMed Hollenbeak CS, Todd MM, Billingsley EM, Harper G, Dyer AM, Lengerich EJ. Increased incidence of melanoma in renal transplantation recipients. Cancer. 2005;104:1962–7.CrossRefPubMed
12.
go back to reference Le Mire L, Hollowood K, Gray D, Bordea C, Wojnarowska F. Melanomas in renal transplant recipients. Br J Dermatol. 2006;154:472–7.CrossRefPubMed Le Mire L, Hollowood K, Gray D, Bordea C, Wojnarowska F. Melanomas in renal transplant recipients. Br J Dermatol. 2006;154:472–7.CrossRefPubMed
13.
go back to reference Vajdic CM, Chong AH, Kelly PJ, Meagher NS, van Leeuwen MT, Grulich AE, et al. Survival after cutaneous melanoma in kidney transplant recipients: a population-based matched cohort study. Am J Transplant. 2014;14:1368–75.CrossRefPubMed Vajdic CM, Chong AH, Kelly PJ, Meagher NS, van Leeuwen MT, Grulich AE, et al. Survival after cutaneous melanoma in kidney transplant recipients: a population-based matched cohort study. Am J Transplant. 2014;14:1368–75.CrossRefPubMed
14.
go back to reference Rovira J, Sabet-Baktach M, Eggenhofer E, Lantow M, Koehl GE, Schlitt HJ, et al. A color-coded reporter model to study the effect of immunosuppressants on CD8+ T-cell memory in antitumor and alloimmune responses. Transplantation. 2013;95:54–62.CrossRefPubMed Rovira J, Sabet-Baktach M, Eggenhofer E, Lantow M, Koehl GE, Schlitt HJ, et al. A color-coded reporter model to study the effect of immunosuppressants on CD8+ T-cell memory in antitumor and alloimmune responses. Transplantation. 2013;95:54–62.CrossRefPubMed
15.
go back to reference Nindl I, Rosl F. Molecular concepts of virus infections causing skin cancer in organ transplant recipients. Am J Transplant. 2008;8:2199–204.CrossRefPubMed Nindl I, Rosl F. Molecular concepts of virus infections causing skin cancer in organ transplant recipients. Am J Transplant. 2008;8:2199–204.CrossRefPubMed
16.
go back to reference Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397:530–4.CrossRefPubMed Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397:530–4.CrossRefPubMed
17.
go back to reference Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.CrossRefPubMed Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.CrossRefPubMed
18.
go back to reference Herman M, Weinstein T, Korzets A, Chagnac A, Ori Y, Zevin D, et al. Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients. J Lab Clin Med. 2001;137:14–20.CrossRefPubMed Herman M, Weinstein T, Korzets A, Chagnac A, Ori Y, Zevin D, et al. Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients. J Lab Clin Med. 2001;137:14–20.CrossRefPubMed
19.
go back to reference de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B. 2001;63:19–27.CrossRefPubMed de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B. 2001;63:19–27.CrossRefPubMed
20.
go back to reference O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309:1871–4.CrossRefPubMedCentralPubMed O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309:1871–4.CrossRefPubMedCentralPubMed
21.
go back to reference Hofbauer GF, Attard NR, Harwood CA, McGregor JM, Dziunycz P, Iotzova-Weiss G, et al. Reversal of UVA skin photosensitivity and DNA damage in kidney transplant recipients by replacing azathioprine. Am J Transplant. 2012;12:218–25.CrossRefPubMed Hofbauer GF, Attard NR, Harwood CA, McGregor JM, Dziunycz P, Iotzova-Weiss G, et al. Reversal of UVA skin photosensitivity and DNA damage in kidney transplant recipients by replacing azathioprine. Am J Transplant. 2012;12:218–25.CrossRefPubMed
22.
go back to reference Koehl G, Andrassy J, Guba M, Richter S, Kroemer A, Scherer MN, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation. 2004;77:1319–26.CrossRefPubMed Koehl G, Andrassy J, Guba M, Richter S, Kroemer A, Scherer MN, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation. 2004;77:1319–26.CrossRefPubMed
23.
go back to reference Duncan FJ, Wulff BC, Tober KL, Ferketich AK, Martin J, Thomas-Ahner JM, et al. Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. Am J Transplant. 2007;7:2693–703.CrossRefPubMed Duncan FJ, Wulff BC, Tober KL, Ferketich AK, Martin J, Thomas-Ahner JM, et al. Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. Am J Transplant. 2007;7:2693–703.CrossRefPubMed
24.
go back to reference Geissler EK, Schlitt HJ, Thomas G. mTOR, cancer and transplantation. Am J Transplant. 2008;8:2212–8.CrossRefPubMed Geissler EK, Schlitt HJ, Thomas G. mTOR, cancer and transplantation. Am J Transplant. 2008;8:2212–8.CrossRefPubMed
25.
go back to reference Bjornsti MA, Houghton PJ. The tor pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.CrossRefPubMed Bjornsti MA, Houghton PJ. The tor pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.CrossRefPubMed
26.
27.
go back to reference Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23:3151–71.CrossRefPubMed Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23:3151–71.CrossRefPubMed
28.
go back to reference Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 2003;4:117–26.CrossRefPubMed Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 2003;4:117–26.CrossRefPubMed
29.
go back to reference Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proceedings. 2003;35:7S–14.CrossRef Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proceedings. 2003;35:7S–14.CrossRef
30.
go back to reference Webster AC, Lee VW, Chapman JR, Craig JC. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation. 2006;81:1234–48.CrossRefPubMed Webster AC, Lee VW, Chapman JR, Craig JC. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation. 2006;81:1234–48.CrossRefPubMed
31.
go back to reference Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178:7018–31.CrossRefPubMed Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178:7018–31.CrossRefPubMed
32.
go back to reference Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed
34.
go back to reference Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.CrossRefPubMedCentralPubMed Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.CrossRefPubMedCentralPubMed
35.
go back to reference Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK, et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol. 2012;23:842–53.CrossRefPubMedCentralPubMed Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK, et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol. 2012;23:842–53.CrossRefPubMedCentralPubMed
36.
go back to reference Egli A, Köhli S, Dickenmann M, Hirsch HH. Inhibition of polyomavirus BK-specific T-cell responses by immunosuppressive drugs. Transplantation. 2009;88:1161–8.CrossRefPubMed Egli A, Köhli S, Dickenmann M, Hirsch HH. Inhibition of polyomavirus BK-specific T-cell responses by immunosuppressive drugs. Transplantation. 2009;88:1161–8.CrossRefPubMed
37.
go back to reference Brennan DC, Aguado JM, Potena L, Jardine AG, Legendre C, Säemann MD, et al. Effect of maintenance immunosuppressive drugs on virus pathobiology: evidence and potential mechanisms. Rev Med Virol. 2013;23:97–125.CrossRefPubMed Brennan DC, Aguado JM, Potena L, Jardine AG, Legendre C, Säemann MD, et al. Effect of maintenance immunosuppressive drugs on virus pathobiology: evidence and potential mechanisms. Rev Med Virol. 2013;23:97–125.CrossRefPubMed
38.
go back to reference Turner AP, Shaffer VO, Araki K, Martens C, Turner PL, Gangappa S, et al. Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am J Transplant. 2011;11:613–8.CrossRefPubMedCentralPubMed Turner AP, Shaffer VO, Araki K, Martens C, Turner PL, Gangappa S, et al. Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am J Transplant. 2011;11:613–8.CrossRefPubMedCentralPubMed
39.
go back to reference Campbell SB, Walker R, Tai SS, Jiang Q, Russ GR. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am J Transplant. 2012;12:1146–56.CrossRefPubMed Campbell SB, Walker R, Tai SS, Jiang Q, Russ GR. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am J Transplant. 2012;12:1146–56.CrossRefPubMed
40.
go back to reference Euvrard S, Morelon E, Rostaing L, Goffin E, Brocard A, Tromme I, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367:329–39.CrossRefPubMed Euvrard S, Morelon E, Rostaing L, Goffin E, Brocard A, Tromme I, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367:329–39.CrossRefPubMed
41.
go back to reference den Akker JMH-v, Harden PN, Hoitsma AJ, Proby CM, Wolterbeek R, Bouwes Bavinck JN, et al. Two-year randomized controlled prospective trial converting treatment of stable renal transplant recipients with cutaneous invasive squamous cell carcinomas to sirolimus. J Clin Oncol. 2013;31:1317–23.CrossRef den Akker JMH-v, Harden PN, Hoitsma AJ, Proby CM, Wolterbeek R, Bouwes Bavinck JN, et al. Two-year randomized controlled prospective trial converting treatment of stable renal transplant recipients with cutaneous invasive squamous cell carcinomas to sirolimus. J Clin Oncol. 2013;31:1317–23.CrossRef
42.
go back to reference Salgo R, Gossmann J, Schöfer H, Kachel HG, Kuck J, Geiger H, et al. Switch to a sirolimus-based immunosuppression in long-term renal transplant recipients: reduced rate of (pre-)malignancies and nonmelanoma skin cancer in a prospective, randomized, assessor-blinded, controlled clinical trial. Am J Transplant. 2010;10:1–9.CrossRef Salgo R, Gossmann J, Schöfer H, Kachel HG, Kuck J, Geiger H, et al. Switch to a sirolimus-based immunosuppression in long-term renal transplant recipients: reduced rate of (pre-)malignancies and nonmelanoma skin cancer in a prospective, randomized, assessor-blinded, controlled clinical trial. Am J Transplant. 2010;10:1–9.CrossRef
43.
go back to reference Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol. 2006;17:581–9.CrossRefPubMed Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol. 2006;17:581–9.CrossRefPubMed
44.
go back to reference Schena FP, Pascoe MD, Alberu J, del Carmen RM, Oberbauer R, Brennan DC, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation. 2009;87:233–42.CrossRefPubMed Schena FP, Pascoe MD, Alberu J, del Carmen RM, Oberbauer R, Brennan DC, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation. 2009;87:233–42.CrossRefPubMed
45.
go back to reference Euvrard S, Boissonnat P, Roussoulieres A, Kanitakis J, Decullier E, Claudy A, et al. Effect of everolimus on skin cancers in calcineurin inhihitor-treated heart transplant recipients. Transpl Int. 2010;23:855–7.CrossRefPubMed Euvrard S, Boissonnat P, Roussoulieres A, Kanitakis J, Decullier E, Claudy A, et al. Effect of everolimus on skin cancers in calcineurin inhihitor-treated heart transplant recipients. Transpl Int. 2010;23:855–7.CrossRefPubMed
46.
go back to reference Alter M, Satzger I, Schrem H, Kaltenborn A, Kapp A, Gutzmer R. Non-melanoma skin cancer is reduced after switch of immunosuppression to mTOR-inhibitors in organ transplant recipients. J Dtsch Dermatol Ges. 2014;12:480–8.PubMed Alter M, Satzger I, Schrem H, Kaltenborn A, Kapp A, Gutzmer R. Non-melanoma skin cancer is reduced after switch of immunosuppression to mTOR-inhibitors in organ transplant recipients. J Dtsch Dermatol Ges. 2014;12:480–8.PubMed
47.
go back to reference Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352:1317–23.CrossRefPubMed Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352:1317–23.CrossRefPubMed
48.
go back to reference Campistol JM, Gutierrez-Dalmau A, Torregrosa JV. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation. 2004;77:760–2.CrossRefPubMed Campistol JM, Gutierrez-Dalmau A, Torregrosa JV. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation. 2004;77:760–2.CrossRefPubMed
49.
go back to reference Lebbé C, Legendre C, Francès C. Kaposi sarcoma in transplantation. Transplant Rev. 2008;22:252–61.CrossRef Lebbé C, Legendre C, Francès C. Kaposi sarcoma in transplantation. Transplant Rev. 2008;22:252–61.CrossRef
Metadata
Title
Skin cancer in solid organ transplant recipients: are mTOR inhibitors a game changer?
Author
Edward K Geissler
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Transplantation Research / Issue 1/2015
Electronic ISSN: 2047-1440
DOI
https://doi.org/10.1186/s13737-014-0022-4