Skip to main content
Top
Published in: Systematic Reviews 1/2018

Open Access 01-12-2018 | Research

Automated screening of research studies for systematic reviews using study characteristics

Authors: Guy Tsafnat, Paul Glasziou, George Karystianis, Enrico Coiera

Published in: Systematic Reviews | Issue 1/2018

Login to get access

Abstract

Background

Screening candidate studies for inclusion in a systematic review is time-consuming when conducted manually. Automation tools could reduce the human effort devoted to screening. Existing methods use supervised machine learning which train classifiers to identify relevant words in the abstracts of candidate articles that have previously been labelled by a human reviewer for inclusion or exclusion. Such classifiers typically reduce the number of abstracts requiring manual screening by about 50%.

Methods

We extracted four key characteristics of observational studies (population, exposure, confounders and outcomes) from the text of titles and abstracts for all articles retrieved using search strategies from systematic reviews. Our screening method excluded studies if they did not meet a predefined set of characteristics. The method was evaluated using three systematic reviews. Screening results were compared to the actual inclusion list of the reviews.

Results

The best screening threshold rule identified studies that mentioned both exposure (E) and outcome (O) in the study abstract. This screening rule excluded 93.7% of retrieved studies with a recall of 98%.

Conclusions

Filtering studies for inclusion in a systematic review based on the detection of key study characteristics in abstracts significantly outperformed standard approaches to automated screening and appears worthy of further development and evaluation.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Elliott JH, Turner T, Clavisi O, Thomas J, Higgins JP, Mavergames C, Gruen RL. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 2014;11(2):e1001603.CrossRefPubMedPubMedCentral Elliott JH, Turner T, Clavisi O, Thomas J, Higgins JP, Mavergames C, Gruen RL. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 2014;11(2):e1001603.CrossRefPubMedPubMedCentral
4.
go back to reference Wilczynski NL, McKibbon KA, Haynes RB. Sensitive clinical queries retrieved relevant systematic reviews as well as primary studies: an analytic survey. J Clin Epidemiol. 2011;64(12):1341–9.CrossRefPubMed Wilczynski NL, McKibbon KA, Haynes RB. Sensitive clinical queries retrieved relevant systematic reviews as well as primary studies: an analytic survey. J Clin Epidemiol. 2011;64(12):1341–9.CrossRefPubMed
5.
go back to reference O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S. Using text mining for study identification in systematic reviews: a systematic review of current approaches. Systematic reviews. 2015;4(1):5.CrossRefPubMedPubMedCentral O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S. Using text mining for study identification in systematic reviews: a systematic review of current approaches. Systematic reviews. 2015;4(1):5.CrossRefPubMedPubMedCentral
8.
go back to reference Mishra R, Bian J, Fiszman M, Weir CR, Jonnalagadda S, Mostafa J, Del Fiol G. Text summarization in the biomedical domain: a systematic review of recent research. J Biomed Inform. 2014;52:457–67.CrossRefPubMed Mishra R, Bian J, Fiszman M, Weir CR, Jonnalagadda S, Mostafa J, Del Fiol G. Text summarization in the biomedical domain: a systematic review of recent research. J Biomed Inform. 2014;52:457–67.CrossRefPubMed
9.
go back to reference Rada G, Pérez D, Capurro D. Epistemonikos: a free, relational, collaborative, multilingual database of health evidence. MedInfo. 2013;2013:486–90. Rada G, Pérez D, Capurro D. Epistemonikos: a free, relational, collaborative, multilingual database of health evidence. MedInfo. 2013;2013:486–90.
10.
go back to reference Karystianis G, Thayer K, Wolfe M, Tsafnat G. Evaluation of a rule-based method for epidemiological document classification towards the automation of systematic reviews. J Biomed Inform. 2017;70:27–34.CrossRefPubMed Karystianis G, Thayer K, Wolfe M, Tsafnat G. Evaluation of a rule-based method for epidemiological document classification towards the automation of systematic reviews. J Biomed Inform. 2017;70:27–34.CrossRefPubMed
11.
go back to reference Ananiadou S, Kell DB, Tsujii J-I. Text mining and its potential applications in systems biology. Trends Biotechnol. 2006;24(12):571–9.CrossRefPubMed Ananiadou S, Kell DB, Tsujii J-I. Text mining and its potential applications in systems biology. Trends Biotechnol. 2006;24(12):571–9.CrossRefPubMed
12.
go back to reference Olorisade BK, de Quincey E, Brereton P, Andras P: A critical analysis of studies that address the use of text mining for citation screening in systematic reviews. In: Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering: 2016. Limerick: ACM; 2016. p. 14. Olorisade BK, de Quincey E, Brereton P, Andras P: A critical analysis of studies that address the use of text mining for citation screening in systematic reviews. In: Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering: 2016. Limerick: ACM; 2016. p. 14.
13.
go back to reference Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczény O, Koletzko B. Pre-and postnatal exposure to perfluorinated compounds (PFCs). Environmental science & technology. 2010;44(18):7123–9.CrossRef Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczény O, Koletzko B. Pre-and postnatal exposure to perfluorinated compounds (PFCs). Environmental science & technology. 2010;44(18):7123–9.CrossRef
14.
go back to reference Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906.PubMedPubMedCentral Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906.PubMedPubMedCentral
15.
go back to reference Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. The navigation guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1028.PubMedPubMedCentral Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. The navigation guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1028.PubMedPubMedCentral
16.
go back to reference Thayer K, Rooney A, Boyles A, Holmgren S, Walker V, Kissling G. Draft protocol for systematic review to evaluate the evidence for an association between bisphenol A (BPA) exposure and obesity. National Toxicology Program. 2013. Thayer K, Rooney A, Boyles A, Holmgren S, Walker V, Kissling G. Draft protocol for systematic review to evaluate the evidence for an association between bisphenol A (BPA) exposure and obesity. National Toxicology Program. 2013.
Metadata
Title
Automated screening of research studies for systematic reviews using study characteristics
Authors
Guy Tsafnat
Paul Glasziou
George Karystianis
Enrico Coiera
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2018
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-018-0724-7

Other articles of this Issue 1/2018

Systematic Reviews 1/2018 Go to the issue