Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224

Authors: Sarah Schumann, Uta Eberlein, Jessica Müller, Harry Scherthan, Michael Lassmann

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the number of α-induced DNA damage tracks elicited in human blood leukocytes after ex-vivo in-solution exposure with Ra-224. The aim was to compare the data to previously published data on Ra-223 and to investigate differences in DNA damage induction between the two radium isotopes.

Results

Blood samples from three healthy volunteers were exposed ex-vivo to six different concentrations of Ra-224 dichloride. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the Ra-224 decay chain, ranging from 0 to 127 mGy. γ-H2AX + 53BP1 DNA damage co-staining and analysis was performed on ethanol-fixed leukocytes isolated from the irradiated blood samples. For damage quantification, α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci were enumerated in the exposed leukocytes. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values.

Conclusions

Our data provide a first estimation of the DNA damage induced by Ra-224 in peripheral blood mononuclear cells. A comparison with our previously published Ra-223 data suggests that there is no difference in the induction of radiation-induced DNA damage between the two radium isotopes due to their similar decay properties.
Literature
1.
go back to reference Lassmann M, Nosske D, Reiners C. Therapy of ankylosing spondylitis with 224Ra-radium chloride: dosimetry and risk considerations. Radiat Environ Biophys. 2002;41(3):173–8.PubMed Lassmann M, Nosske D, Reiners C. Therapy of ankylosing spondylitis with 224Ra-radium chloride: dosimetry and risk considerations. Radiat Environ Biophys. 2002;41(3):173–8.PubMed
2.
go back to reference Nekolla EA, Kellerer AM, Kuse-Isingschulte M, Eder E, Spiess H. Malignancies in patients treated with high doses of radium-224. Radiat Res. 1999;152(6 Suppl):S3–7.CrossRefPubMed Nekolla EA, Kellerer AM, Kuse-Isingschulte M, Eder E, Spiess H. Malignancies in patients treated with high doses of radium-224. Radiat Res. 1999;152(6 Suppl):S3–7.CrossRefPubMed
3.
go back to reference Wick RR, Atkinson MJ, Nekolla EA. Incidence of leukaemia and other malignant diseases following injections of the short-lived alpha-emitter 224Ra into man. Radiat Environ Biophys. 2009;48(3):287–94.CrossRefPubMed Wick RR, Atkinson MJ, Nekolla EA. Incidence of leukaemia and other malignant diseases following injections of the short-lived alpha-emitter 224Ra into man. Radiat Environ Biophys. 2009;48(3):287–94.CrossRefPubMed
4.
go back to reference Westrom S, Bonsdorff TB, Bruland OS, Larsen RH. Therapeutic effect of alpha-emitting (224)Ra-labeled calcium carbonate microparticles in mice with intraperitoneal ovarian Cancer. Transl Oncol. 2018;11(2):259–67.CrossRefPubMedPubMedCentral Westrom S, Bonsdorff TB, Bruland OS, Larsen RH. Therapeutic effect of alpha-emitting (224)Ra-labeled calcium carbonate microparticles in mice with intraperitoneal ovarian Cancer. Transl Oncol. 2018;11(2):259–67.CrossRefPubMedPubMedCentral
5.
go back to reference Westrom S, Malenge M, Jorstad IS, Napoli E, Bruland OS, Bonsdorff TB, et al. Ra-224 labeling of calcium carbonate microparticles for internal alpha-therapy: preparation, stability, and biodistribution in mice. J Labelled Comp Radiopharm. 2018;61(6):472–86.CrossRefPubMedPubMedCentral Westrom S, Malenge M, Jorstad IS, Napoli E, Bruland OS, Bonsdorff TB, et al. Ra-224 labeling of calcium carbonate microparticles for internal alpha-therapy: preparation, stability, and biodistribution in mice. J Labelled Comp Radiopharm. 2018;61(6):472–86.CrossRefPubMedPubMedCentral
6.
go back to reference Juzeniene A, Bernoulli J, Suominen M, Halleen J, Larsen RH. Antitumor activity of novel bone-seeking, alpha-emitting (224)Ra-solution in a breast cancer skeletal metastases model. Anticancer Res. 2018;38(4):1947–55.PubMed Juzeniene A, Bernoulli J, Suominen M, Halleen J, Larsen RH. Antitumor activity of novel bone-seeking, alpha-emitting (224)Ra-solution in a breast cancer skeletal metastases model. Anticancer Res. 2018;38(4):1947–55.PubMed
7.
go back to reference Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.CrossRefPubMed Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.CrossRefPubMed
8.
go back to reference Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.CrossRefPubMedPubMedCentral Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.CrossRefPubMedPubMedCentral
9.
go back to reference Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Annals of the ICRP. 2018:0146645318756253. Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Annals of the ICRP. 2018:0146645318756253.
10.
go back to reference Kratochwil C, Schmidt K, Afshar-Oromieh A, Bruchertseifer F, Rathke H, Morgenstern A, et al. Targeted alpha therapy of mCRPC: dosimetry estimate of 213Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging. 2018;45(1):31–7.CrossRefPubMed Kratochwil C, Schmidt K, Afshar-Oromieh A, Bruchertseifer F, Rathke H, Morgenstern A, et al. Targeted alpha therapy of mCRPC: dosimetry estimate of 213Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging. 2018;45(1):31–7.CrossRefPubMed
11.
go back to reference Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624–31.CrossRefPubMed Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624–31.CrossRefPubMed
12.
go back to reference Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.CrossRefPubMedPubMedCentral Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.CrossRefPubMedPubMedCentral
13.
go back to reference Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M, et al. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12.CrossRefPubMed Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M, et al. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12.CrossRefPubMed
14.
go back to reference Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res. 2008;49(3):203–10.CrossRefPubMed Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res. 2008;49(3):203–10.CrossRefPubMed
15.
go back to reference Karlsson KH, Stenerlow B. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res. 2004;161(5):517–27.CrossRefPubMed Karlsson KH, Stenerlow B. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res. 2004;161(5):517–27.CrossRefPubMed
16.
go back to reference Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 2004;303(5654):92–5.CrossRefPubMed Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 2004;303(5654):92–5.CrossRefPubMed
17.
go back to reference Sage E, Shikazono N. Radiation-induced clustered DNA lesions: repair and mutagenesis. Free Radic Biol Med. 2017;107:125–35.CrossRefPubMed Sage E, Shikazono N. Radiation-induced clustered DNA lesions: repair and mutagenesis. Free Radic Biol Med. 2017;107:125–35.CrossRefPubMed
18.
go back to reference Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-Scholz G, et al. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells. Front Oncol. 2015;5:250.CrossRefPubMedPubMedCentral Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-Scholz G, et al. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells. Front Oncol. 2015;5:250.CrossRefPubMedPubMedCentral
19.
go back to reference Schumann S, Eberlein U, Muhtadi R, Lassmann M, Scherthan H. DNA damage in leukocytes after internal ex-vivo irradiation of blood with the alpha-emitter Ra-223. Sci Rep. 2018;8(1):2286.CrossRefPubMedPubMedCentral Schumann S, Eberlein U, Muhtadi R, Lassmann M, Scherthan H. DNA damage in leukocytes after internal ex-vivo irradiation of blood with the alpha-emitter Ra-223. Sci Rep. 2018;8(1):2286.CrossRefPubMedPubMedCentral
20.
go back to reference Stephan G, Kampen WU, Nosske D, Roos H. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat Environ Biophys. 2005;44(1):23–8.CrossRefPubMed Stephan G, Kampen WU, Nosske D, Roos H. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat Environ Biophys. 2005;44(1):23–8.CrossRefPubMed
21.
go back to reference Ding D, Zhang Y, Wang J, Wang X, Fan D, He L, et al. Gamma-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes. Sci Rep. 2016;6:38295.CrossRefPubMedPubMedCentral Ding D, Zhang Y, Wang J, Wang X, Fan D, He L, et al. Gamma-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes. Sci Rep. 2016;6:38295.CrossRefPubMedPubMedCentral
22.
go back to reference Eckerman KF, Endo A. MIRD: Radionuclide data and decay schemes, vol. VIII. Reston: Society of Nuclear Medicine; 2008. p. 671. Eckerman KF, Endo A. MIRD: Radionuclide data and decay schemes, vol. VIII. Reston: Society of Nuclear Medicine; 2008. p. 671.
24.
go back to reference Eberlein U, Peper M, Fernandez M, Lassmann M, Scherthan H. Calibration of the gamma-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS One. 2015;10(4):e0123174.CrossRefPubMedPubMedCentral Eberlein U, Peper M, Fernandez M, Lassmann M, Scherthan H. Calibration of the gamma-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS One. 2015;10(4):e0123174.CrossRefPubMedPubMedCentral
25.
go back to reference Eberlein U, Nowak C, Bluemel C, Buck AK, Werner RA, Scherthan H, et al. DNA damage in blood lymphocytes in patients after (177)Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2015;42(11):1739–49.CrossRefPubMedPubMedCentral Eberlein U, Nowak C, Bluemel C, Buck AK, Werner RA, Scherthan H, et al. DNA damage in blood lymphocytes in patients after (177)Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2015;42(11):1739–49.CrossRefPubMedPubMedCentral
26.
go back to reference Eberlein U, Scherthan H, Bluemel C, Peper M, Lapa C, Buck AK, et al. DNA damage in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy. J Nucl Med. 2016;57(2):173–9.CrossRefPubMed Eberlein U, Scherthan H, Bluemel C, Peper M, Lapa C, Buck AK, et al. DNA damage in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy. J Nucl Med. 2016;57(2):173–9.CrossRefPubMed
Metadata
Title
Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224
Authors
Sarah Schumann
Uta Eberlein
Jessica Müller
Harry Scherthan
Michael Lassmann
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0422-4

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue