Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Quantification of myocardial blood flow with 82Rb: Validation with 15O-water using time-of-flight and point-spread-function modeling

Authors: Mary Germino, Jim Ropchan, Tim Mulnix, Kathryn Fontaine, Nabeel Nabulsi, Eric Ackah, Herman Feringa, Albert J. Sinusas, Chi Liu, Richard E. Carson

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

We quantified myocardial blood flow with 82Rb PET using parameters of the generalized Renkin-Crone model estimated from 82Rb and 15O-water images reconstructed with time-of-flight and point spread function modeling. Previous estimates of rubidium extraction have used older-generation scanners without time-of-flight or point spread function modeling. We validated image-derived input functions with continuously collected arterial samples.

Methods

Nine healthy subjects were scanned at rest and under pharmacological stress on the Siemens Biograph mCT with 82Rb and 15O-water PET, undergoing arterial blood sampling with each scan. Image-derived input functions were estimated from the left ventricle cavity and corrected with tracer-specific population-based scale factors determined from arterial data. Kinetic parametric images were generated from the dynamic PET images by fitting the one-tissue compartment model to each voxel’s time activity curve. Mean myocardial blood flow was determined from each subject’s 15O-water k 2 images. The parameters of the generalized Renkin-Crone model were estimated from these water-based flows and mean myocardial 82Rb K 1 estimates.

Results

Image-derived input functions showed improved agreement with arterial measurements after a scale correction. The Renkin-Crone model fit (a = 0.77, b = 0.39) was similar to those previously published, though b was lower.

Conclusions

We have presented parameter estimates for the generalized Renkin-Crone model of extraction for 82Rb PET using human 82Rb and 15O-water PET from high-resolution images using a state-of-the-art time-of-flight-capable scanner. These results provide a state-of-the-art methodology for myocardial blood flow measurement with 82Rb PET.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grover-McKay M, Ratib O, Schwaiger M, Wohlgelernter D, Araujo L, Nienaber C, et al. Detection of coronary artery disease with positron emission tomography and rubidium 82. Am Heart J. 1992;123:646–52.CrossRefPubMed Grover-McKay M, Ratib O, Schwaiger M, Wohlgelernter D, Araujo L, Nienaber C, et al. Detection of coronary artery disease with positron emission tomography and rubidium 82. Am Heart J. 1992;123:646–52.CrossRefPubMed
2.
go back to reference Parkash R, Ruddy T, Kitsikis A, Hart R, Beauschene L, Williams K, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.CrossRefPubMed Parkash R, Ruddy T, Kitsikis A, Hart R, Beauschene L, Williams K, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.CrossRefPubMed
3.
go back to reference Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll of Cardiol. 2007;49:1052–8.CrossRef Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll of Cardiol. 2007;49:1052–8.CrossRef
4.
go back to reference Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.CrossRefPubMed Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.CrossRefPubMed
5.
go back to reference Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.PubMed Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.PubMed
6.
go back to reference Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien HA, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med. 1983;24:898–906.PubMed Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien HA, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med. 1983;24:898–906.PubMed
7.
go back to reference Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197:297. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197:297.
8.
go back to reference Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.CrossRefPubMed Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.CrossRefPubMed
9.
go back to reference Moody J, Murthy V, Lee B, Corbett J, Ficaro E. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imag. 2015;34:2343–2353.CrossRef Moody J, Murthy V, Lee B, Corbett J, Ficaro E. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imag. 2015;34:2343–2353.CrossRef
10.
go back to reference Lautamäki R, George RT, Kitagawa K, Higuchi T, Merrill J, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging. 2009;36:576–86.CrossRefPubMed Lautamäki R, George RT, Kitagawa K, Higuchi T, Merrill J, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging. 2009;36:576–86.CrossRefPubMed
11.
go back to reference Lortie M, Beanlands RS, Yoshinaga K, Klein R, DaSilva JN. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.CrossRefPubMed Lortie M, Beanlands RS, Yoshinaga K, Klein R, DaSilva JN. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.CrossRefPubMed
12.
go back to reference Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037–47.CrossRefPubMedPubMedCentral Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037–47.CrossRefPubMedPubMedCentral
13.
go back to reference Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, et al. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19:763–74.CrossRefPubMed Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, et al. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19:763–74.CrossRefPubMed
14.
go back to reference Tipnis S, Hu Z, Gagnon D, O’Donnell J. Time-of-flight PET for Rb-82 cardiac perfusion imaging. J Nucl Med. 2008;49:74. Tipnis S, Hu Z, Gagnon D, O’Donnell J. Time-of-flight PET for Rb-82 cardiac perfusion imaging. J Nucl Med. 2008;49:74.
15.
go back to reference DiFilippo F, Brunken R. Benefit of time-of-flight reconstruction for cardiac PET of obese patients [Abstract]. J Nucl Med Soc Nuclear Med. 2013;54:405. DiFilippo F, Brunken R. Benefit of time-of-flight reconstruction for cardiac PET of obese patients [Abstract]. J Nucl Med Soc Nuclear Med. 2013;54:405.
16.
go back to reference Armstrong IS, Tonge CM, Arumugam P. Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol. 2014;21:467–74.CrossRefPubMed Armstrong IS, Tonge CM, Arumugam P. Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol. 2014;21:467–74.CrossRefPubMed
17.
go back to reference Presotto L, Gianolli L, Gilardi M, Bettinardi V. Evaluation of image reconstruction algorithms encompassing time-of-flight and point spread function modelling for quantitative cardiac PET: phantom studies. J Nucl Cardiol. 2015;22:351–63.CrossRefPubMed Presotto L, Gianolli L, Gilardi M, Bettinardi V. Evaluation of image reconstruction algorithms encompassing time-of-flight and point spread function modelling for quantitative cardiac PET: phantom studies. J Nucl Cardiol. 2015;22:351–63.CrossRefPubMed
18.
go back to reference Meyer C, Peligrad D-N, Weibrecht M. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82 Rb PET perfusion studies. Nucl Instrum Meth A. 2007;571:199–202.CrossRef Meyer C, Peligrad D-N, Weibrecht M. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82 Rb PET perfusion studies. Nucl Instrum Meth A. 2007;571:199–202.CrossRef
19.
go back to reference Weinberg I, Huang S, Hoffman E, Araujo L, Nienaber C, McKay MG, et al. Validation of PET-acquired input functions for cardiac studies. J Nucl Med. 1988;29:241–7.PubMed Weinberg I, Huang S, Hoffman E, Araujo L, Nienaber C, McKay MG, et al. Validation of PET-acquired input functions for cardiac studies. J Nucl Med. 1988;29:241–7.PubMed
20.
go back to reference Murthy VL, Lee BC, Sitek A, Naya M, Moody J, Polavarapu V, et al. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med. 2014;55:1952–8.CrossRefPubMed Murthy VL, Lee BC, Sitek A, Naya M, Moody J, Polavarapu V, et al. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med. 2014;55:1952–8.CrossRefPubMed
21.
go back to reference Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med. 1997;38:660.PubMed Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med. 1997;38:660.PubMed
22.
go back to reference Bergmann S, Fox K, Rand A, McElvany K, Welch M, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.CrossRefPubMed Bergmann S, Fox K, Rand A, McElvany K, Welch M, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.CrossRefPubMed
23.
go back to reference Lodge MA, Carson RE, Carrasquillo JA, Whatley M, Libutti SK, Bacharach SL. Parametric images of blood flow in oncology PET studies using [15O] water. J Nucl Med. 2000;41:1784–92.PubMed Lodge MA, Carson RE, Carrasquillo JA, Whatley M, Libutti SK, Bacharach SL. Parametric images of blood flow in oncology PET studies using [15O] water. J Nucl Med. 2000;41:1784–92.PubMed
24.
go back to reference Lawrence I, Lin K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68.CrossRef Lawrence I, Lin K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68.CrossRef
25.
go back to reference Iida H, Kanno I, Takahashi A, Miura S, Murakami M-t, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104–15.CrossRefPubMed Iida H, Kanno I, Takahashi A, Miura S, Murakami M-t, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104–15.CrossRefPubMed
26.
go back to reference Boggs PT, Donaldson JR, Schnabel RB. Algorithm 676: ODRPACK: software for weighted orthogonal distance regression. ACM Trans Math Softw. 1989;15:348–64.CrossRef Boggs PT, Donaldson JR, Schnabel RB. Algorithm 676: ODRPACK: software for weighted orthogonal distance regression. ACM Trans Math Softw. 1989;15:348–64.CrossRef
27.
go back to reference Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4:402–12.CrossRefPubMed Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4:402–12.CrossRefPubMed
28.
go back to reference Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. Nucl Sci IEEE Trans. 2011;58:2264–75.CrossRef Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. Nucl Sci IEEE Trans. 2011;58:2264–75.CrossRef
29.
go back to reference Tout D, Tonge CM, Muthu S, Arumugam P. Assessment of a protocol for routine simultaneous myocardial blood flow measurement and standard myocardial perfusion imaging with rubidium-82 on a high count rate positron emission tomography system. Nucl Med Commun. 2012;33:1202–11.CrossRefPubMed Tout D, Tonge CM, Muthu S, Arumugam P. Assessment of a protocol for routine simultaneous myocardial blood flow measurement and standard myocardial perfusion imaging with rubidium-82 on a high count rate positron emission tomography system. Nucl Med Commun. 2012;33:1202–11.CrossRefPubMed
30.
go back to reference Renaud JM, DaSilva JN, Beanlands RS. Characterizing the normal range of myocardial blood flow with 82rubidium and 13 N-ammonia PET imaging. J Nucl Cardiol. 2013;20:578–91.CrossRefPubMed Renaud JM, DaSilva JN, Beanlands RS. Characterizing the normal range of myocardial blood flow with 82rubidium and 13 N-ammonia PET imaging. J Nucl Cardiol. 2013;20:578–91.CrossRefPubMed
Metadata
Title
Quantification of myocardial blood flow with 82Rb: Validation with 15O-water using time-of-flight and point-spread-function modeling
Authors
Mary Germino
Jim Ropchan
Tim Mulnix
Kathryn Fontaine
Nabeel Nabulsi
Eric Ackah
Herman Feringa
Albert J. Sinusas
Chi Liu
Richard E. Carson
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0215-6

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue