Skip to main content
Top
Published in: Experimental & Translational Stroke Medicine 1/2015

Open Access 01-12-2015 | Research

Docosahexaenoic acid improves behavior and attenuates blood–brain barrier injury induced by focal cerebral ischemia in rats

Authors: Sung-Ha Hong, Larissa Khoutorova, Nicolas G Bazan, Ludmila Belayev

Published in: Experimental & Translational Stroke Medicine | Issue 1/2015

Login to get access

Abstract

Background

Ischemic brain injury disrupts the blood–brain barrier (BBB) and then triggers a cascade of events, leading to edema formation, secondary brain injury and poor neurological outcomes. Recently, we have shown that docosahexaenoic acid (DHA) improves functional and histological outcomes following experimental stroke. However, little is known about the effect of DHA on BBB dysfunction after cerebral ischemia-reperfusion injury. The present study was designed to determine whether DHA protects against BBB disruption after focal cerebral ischemia in rats.

Methods

Physiologically-controlled SD rats received 2 h middle cerebral artery occlusion (MCAo). DHA (5 mg/kg) or vehicle (saline) was administered I.V. at 3 h after onset of MCAo. Fluorometric quantitation of Evans Blue dye (EB) was performed in eight brain regions at 6 h, 24 h or 72 h after MCAo. Fluorescein isothiocynate (FITC) - dextran leakage and histopathology was evaluated on day 3 after stroke.

Results

Physiological variables were stable and showed no significant differences between groups. DHA improved neurological deficits at 24 h, 48 h and 72 h and decreased EB extravasation in the ischemic hemisphere at 6 h (by 30%), 24 h (by 48%) and 72 h (by 38%). In addition, EB extravasation was decreased by DHA in the cortex and total hemisphere as well. FITC-dextran leakage was reduced by DHA treatment on day 3 by 68% compared to the saline group. DHA treatment attenuated cortical (by 50%) and total infarct volume (by 38%) compared to vehicle-treated rats on day 3 after stroke.

Conclusions

DHA therapy diminishes BBB damage accompanied with the acceleration of behavioral recovery and attenuation of the infarct volume. It is reasonable to propose that DHA has the potential for treating focal ischemic stroke in the clinical setting.
Literature
1.
go back to reference Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.PubMedCrossRef Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.PubMedCrossRef
4.
go back to reference Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke. 2004;35(11 suppl 1):2659–61.PubMedCrossRef Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke. 2004;35(11 suppl 1):2659–61.PubMedCrossRef
5.
go back to reference Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88–96.PubMedCrossRef Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88–96.PubMedCrossRef
6.
go back to reference Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood–brain barrier following transient focal ischemia: Effects of hypothermia. Can J Neurol Sci. 1999;26:298–304.PubMedCrossRef Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood–brain barrier following transient focal ischemia: Effects of hypothermia. Can J Neurol Sci. 1999;26:298–304.PubMedCrossRef
7.
go back to reference Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005;36:189–92.PubMedCrossRef Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005;36:189–92.PubMedCrossRef
8.
go back to reference Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40:3121–6.PubMedCentralPubMedCrossRef Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40:3121–6.PubMedCentralPubMedCrossRef
9.
go back to reference Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res. 2011;2:33–41.PubMedCentralPubMedCrossRef Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res. 2011;2:33–41.PubMedCentralPubMedCrossRef
10.
go back to reference Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care. 2007;10:136–41.PubMedCrossRef Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care. 2007;10:136–41.PubMedCrossRef
11.
go back to reference Bazan NG. The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol. 2006;26:901–13.PubMedCrossRef Bazan NG. The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol. 2006;26:901–13.PubMedCrossRef
12.
go back to reference Bazan NG, Musto AE, Knott EJ. Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity. Mol Neurobiol. 2011;44:216–22.PubMedCentralPubMedCrossRef Bazan NG, Musto AE, Knott EJ. Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity. Mol Neurobiol. 2011;44:216–22.PubMedCentralPubMedCrossRef
13.
go back to reference Eady TN, Belayev L, Khoutorova L, Atkins KD, Zhang C, Bazan NG. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. PLoS One. 2012;7(10):e46151.PubMedCentralPubMedCrossRef Eady TN, Belayev L, Khoutorova L, Atkins KD, Zhang C, Bazan NG. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. PLoS One. 2012;7(10):e46151.PubMedCentralPubMedCrossRef
14.
go back to reference Sandoval KE, Witt KA. Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32:200–19.PubMedCrossRef Sandoval KE, Witt KA. Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32:200–19.PubMedCrossRef
15.
go back to reference Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation. 2008;15:1–14.PubMedCrossRef Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation. 2008;15:1–14.PubMedCrossRef
16.
go back to reference Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using evans blue fluorescence. J Cereb Blood Flow Metab. 1988;8:282–4.PubMedCrossRef Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using evans blue fluorescence. J Cereb Blood Flow Metab. 1988;8:282–4.PubMedCrossRef
17.
go back to reference Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, et al. Severe blood–brain barrier disruption and surrounding tissue injury. Stroke. 2009;40:e666–74.PubMedCentralPubMedCrossRef Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, et al. Severe blood–brain barrier disruption and surrounding tissue injury. Stroke. 2009;40:e666–74.PubMedCentralPubMedCrossRef
18.
go back to reference Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke. 1996;27:1616–22. discussion 1623.PubMedCrossRef Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke. 1996;27:1616–22. discussion 1623.PubMedCrossRef
19.
go back to reference Belayev L, Busto R, Ikeda M, Rubin LL, Kajiwara A, Morgan L, et al. Protection against blood–brain barrier disruption in focal cerebral ischemia by the type IV phosphodiesterase inhibitor BBB022: a quantitative study. Brain Res. 1998;787:277–85.PubMedCrossRef Belayev L, Busto R, Ikeda M, Rubin LL, Kajiwara A, Morgan L, et al. Protection against blood–brain barrier disruption in focal cerebral ischemia by the type IV phosphodiesterase inhibitor BBB022: a quantitative study. Brain Res. 1998;787:277–85.PubMedCrossRef
20.
go back to reference Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M. High and low molecular weight fluorescein isothiocyanate (FITC)-dextrans to assess blood–brain barrier disruption: technical considerations. Transl Stroke Res. 2011;2:106–11.PubMedCentralPubMedCrossRef Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M. High and low molecular weight fluorescein isothiocyanate (FITC)-dextrans to assess blood–brain barrier disruption: technical considerations. Transl Stroke Res. 2011;2:106–11.PubMedCentralPubMedCrossRef
21.
go back to reference Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3 h after ischemia onset. Neurobiol Dis. 2012;48:309–16.PubMedCrossRef Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3 h after ischemia onset. Neurobiol Dis. 2012;48:309–16.PubMedCrossRef
22.
go back to reference Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29:263–71.PubMedCrossRef Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29:263–71.PubMedCrossRef
23.
go back to reference Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15:159–66.PubMedCrossRef Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15:159–66.PubMedCrossRef
24.
go back to reference Belayev L, Marcheselli VL, Khoutorova L, de Turco EB R, Busto R, Ginsberg MD, et al. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke. 2005;36:118–23.PubMedCrossRef Belayev L, Marcheselli VL, Khoutorova L, de Turco EB R, Busto R, Ginsberg MD, et al. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke. 2005;36:118–23.PubMedCrossRef
25.
go back to reference Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338:135–41.PubMedCrossRef Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338:135–41.PubMedCrossRef
26.
go back to reference Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr. 2011;31:321–51.PubMedCentralPubMedCrossRef Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr. 2011;31:321–51.PubMedCentralPubMedCrossRef
27.
28.
go back to reference Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278:43807–17.PubMedCrossRef Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278:43807–17.PubMedCrossRef
30.
go back to reference de Turco EB R, Belayev L, Liu Y, Busto R, Parkins N, Bazan NG, et al. Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. J Neurochem. 2002;83:515–24.CrossRef de Turco EB R, Belayev L, Liu Y, Busto R, Parkins N, Bazan NG, et al. Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. J Neurochem. 2002;83:515–24.CrossRef
31.
go back to reference Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008;233:674–88.CrossRef Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008;233:674–88.CrossRef
32.
go back to reference Das UN. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008;7:37.PubMedCentralPubMedCrossRef Das UN. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008;7:37.PubMedCentralPubMedCrossRef
33.
34.
go back to reference Van Bilsen M, Planavila A. Fatty acids and cardiac disease: fuel carrying a message. Acta Physiol (Oxf). 2014;211:476–90.CrossRef Van Bilsen M, Planavila A. Fatty acids and cardiac disease: fuel carrying a message. Acta Physiol (Oxf). 2014;211:476–90.CrossRef
35.
go back to reference Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke. 2004;35:2220–5.PubMedCrossRef Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke. 2004;35:2220–5.PubMedCrossRef
36.
37.
go back to reference Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.PubMed Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.PubMed
38.
go back to reference Rapoport SI, Rao JS, Igarashi M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids. 2007;77:251–61.PubMedCentralPubMedCrossRef Rapoport SI, Rao JS, Igarashi M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids. 2007;77:251–61.PubMedCentralPubMedCrossRef
39.
41.
go back to reference Farkas E, de Wilde MC, Kiliaan AJ, Luiten PG. Systemic effects of dietary n-3 PUFA supplementation accompany changes of CNS parameters in cerebral hypoperfusion. Ann N Y Acad Sci. 2002;977:77–86.PubMedCrossRef Farkas E, de Wilde MC, Kiliaan AJ, Luiten PG. Systemic effects of dietary n-3 PUFA supplementation accompany changes of CNS parameters in cerebral hypoperfusion. Ann N Y Acad Sci. 2002;977:77–86.PubMedCrossRef
42.
go back to reference Cao D, Li M, Xue R, Zheng W, Liu Z, Wang X. Chronic administration of ethyl docosahexaenoate decreases mortality and cerebral edema in ischemic gerbils. Life Sci. 2005;78:74–81.PubMedCrossRef Cao D, Li M, Xue R, Zheng W, Liu Z, Wang X. Chronic administration of ethyl docosahexaenoate decreases mortality and cerebral edema in ischemic gerbils. Life Sci. 2005;78:74–81.PubMedCrossRef
43.
go back to reference Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, et al. Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem. 2009;20:715–25.PubMedCrossRef Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, et al. Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem. 2009;20:715–25.PubMedCrossRef
44.
go back to reference Yang DY, Pan HC, Yen YJ, Wang CC, Chuang YH, Chen SY, et al. Detrimental effects of post-treatment with fatty acids on brain injury in ischemic rats. Neurotoxicology. 2007;28:1220–9.PubMedCrossRef Yang DY, Pan HC, Yen YJ, Wang CC, Chuang YH, Chen SY, et al. Detrimental effects of post-treatment with fatty acids on brain injury in ischemic rats. Neurotoxicology. 2007;28:1220–9.PubMedCrossRef
Metadata
Title
Docosahexaenoic acid improves behavior and attenuates blood–brain barrier injury induced by focal cerebral ischemia in rats
Authors
Sung-Ha Hong
Larissa Khoutorova
Nicolas G Bazan
Ludmila Belayev
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Experimental & Translational Stroke Medicine / Issue 1/2015
Electronic ISSN: 2040-7378
DOI
https://doi.org/10.1186/s13231-014-0012-0