Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Mild Neurocognitive Disorder | Review

Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease

Authors: Kevin Blanco, Stefanny Salcidua, Paulina Orellana, Tania Sauma-Pérez, Tomás León, Lorena Cecilia López Steinmetz, Agustín Ibañez, Claudia Duran-Aniotz, Rolando de la Cruz

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80–90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer’s disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
Literature
1.
go back to reference Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Internal Med. 2004;256(3):240–6.PubMed Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Internal Med. 2004;256(3):240–6.PubMed
2.
go back to reference Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Thalamuthu A, Andrews G, Brayne C, Matthews FE, Stephan BC, Lipton RB, Katz MJ, Ritchie K, Carrière I, Ancelin ML, Lam LC, Wong CH, Fung AW, Guaita A, Vaccaro R, Davin A, et al. Cohort Studies of Memory in an International Consortium (COSMIC). The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: the COSMIC Collaboration. PLoS ONE. 2015;10(11).PubMedPubMedCentral Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Thalamuthu A, Andrews G, Brayne C, Matthews FE, Stephan BC, Lipton RB, Katz MJ, Ritchie K, Carrière I, Ancelin ML, Lam LC, Wong CH, Fung AW, Guaita A, Vaccaro R, Davin A, et al. Cohort Studies of Memory in an International Consortium (COSMIC). The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: the COSMIC Collaboration. PLoS ONE. 2015;10(11).PubMedPubMedCentral
3.
go back to reference Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, et al. Dementia prevention, intervention, and care. Lancet (London, England). 2017;390(10113):2673–734.PubMed Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, et al. Dementia prevention, intervention, and care. Lancet (London, England). 2017;390(10113):2673–734.PubMed
4.
go back to reference Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM. Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol. 1998;57(12):1168–74.PubMed Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM. Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol. 1998;57(12):1168–74.PubMed
5.
go back to reference Grill JD, Raman R, Ernstrom K, Aisen P, Karlawish J. Effect of study partner on the conduct of Alzheimer disease clinical trials. Neurology. 2013;80(3):282–8.PubMedPubMedCentral Grill JD, Raman R, Ernstrom K, Aisen P, Karlawish J. Effect of study partner on the conduct of Alzheimer disease clinical trials. Neurology. 2013;80(3):282–8.PubMedPubMedCentral
6.
go back to reference Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–65.PubMed Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–65.PubMed
7.
go back to reference Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.PubMed Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.PubMed
8.
go back to reference Bruscoli M, Lovestone S. Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr. 2004;16(2):129–40.PubMed Bruscoli M, Lovestone S. Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr. 2004;16(2):129–40.PubMed
9.
go back to reference Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.PubMed Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.PubMed
10.
go back to reference Panza F, D’Introno A, Colacicco AM, Capurso C, Del Parigi A, Caselli RJ, Pilotto A, Argentieri G, Scapicchio PL, Scafato E, Capurso A, Solfrizzi V. Current epidemiology of mild cognitive impairment and other predementia syndromes. Am J Geriatr Psychiatry. 2005;13(8):633–44.PubMed Panza F, D’Introno A, Colacicco AM, Capurso C, Del Parigi A, Caselli RJ, Pilotto A, Argentieri G, Scapicchio PL, Scafato E, Capurso A, Solfrizzi V. Current epidemiology of mild cognitive impairment and other predementia syndromes. Am J Geriatr Psychiatry. 2005;13(8):633–44.PubMed
11.
12.
go back to reference DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003;2(1):15–21.PubMed DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003;2(1):15–21.PubMed
13.
go back to reference Chun CT, Seward K, Patterson A, Melton A, MacDonald-Wicks L. Evaluation of available cognitive tools used to measure mild cognitive decline: a scoping review. Nutrients. 2021;13(11):3974.PubMedPubMedCentral Chun CT, Seward K, Patterson A, Melton A, MacDonald-Wicks L. Evaluation of available cognitive tools used to measure mild cognitive decline: a scoping review. Nutrients. 2021;13(11):3974.PubMedPubMedCentral
14.
go back to reference Biomarkers Definitions Working Group, Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger SL. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. Biomarkers Definitions Working Group, Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger SL. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
15.
go back to reference Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66–77.PubMed Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66–77.PubMed
16.
go back to reference Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, Saint Louis LA, Wisniewski HM. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet (London, England). 1999;353(9146):38–40.PubMed Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, Saint Louis LA, Wisniewski HM. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet (London, England). 1999;353(9146):38–40.PubMed
17.
go back to reference Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L, Chui HC. Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol. 2005;57(6):896–903.PubMedPubMedCentral Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L, Chui HC. Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol. 2005;57(6):896–903.PubMedPubMedCentral
18.
go back to reference Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM. The histological validation of postmortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 2000;95(3):721–5.PubMed Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM. The histological validation of postmortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 2000;95(3):721–5.PubMed
19.
go back to reference Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.PubMedPubMedCentral Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.PubMedPubMedCentral
20.
go back to reference Silverman DH, Phelps ME. Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke. Mol Genet Metab. 2001;74(1–2):128–38.PubMed Silverman DH, Phelps ME. Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke. Mol Genet Metab. 2001;74(1–2):128–38.PubMed
21.
go back to reference Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.PubMed Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.PubMed
22.
go back to reference de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Scherer AJ, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, Schlyer D, Poirier J, Reisberg B, Fowler J. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci USA. 2001;98(19):10966–71.PubMedPubMedCentral de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Scherer AJ, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, Schlyer D, Poirier J, Reisberg B, Fowler J. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci USA. 2001;98(19):10966–71.PubMedPubMedCentral
23.
go back to reference Koychev I, Gunn RN, Firouzian A, Lawson J, Zamboni G, Ridha B, Sahakian BJ, Rowe JB, Thomas A, Rochester L, Ffytche D, Howard R, Zetterberg H, MacKay C, Lovestone S, Deep and Frequent Phenotyping study team. PET tau and amyloid-β burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimer’s Dis. 2017;60(1):283–93. Koychev I, Gunn RN, Firouzian A, Lawson J, Zamboni G, Ridha B, Sahakian BJ, Rowe JB, Thomas A, Rochester L, Ffytche D, Howard R, Zetterberg H, MacKay C, Lovestone S, Deep and Frequent Phenotyping study team. PET tau and amyloid-β burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimer’s Dis. 2017;60(1):283–93.
24.
go back to reference Ossenkoppele R, Iaccarino L, Schonhaut DR, Brown JA, La Joie R, O’Neil JP, Janabi M, Baker SL, Kramer JH, Gorno-Tempini ML, Miller BL, Rosen HJ, Seeley WW, Jagust WJ, Rabinovici GD. Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain. NeuroImage Clin. 2019;23: 101848.PubMedPubMedCentral Ossenkoppele R, Iaccarino L, Schonhaut DR, Brown JA, La Joie R, O’Neil JP, Janabi M, Baker SL, Kramer JH, Gorno-Tempini ML, Miller BL, Rosen HJ, Seeley WW, Jagust WJ, Rabinovici GD. Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain. NeuroImage Clin. 2019;23: 101848.PubMedPubMedCentral
25.
go back to reference Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 2018;91(9):e859–66.PubMedPubMedCentral Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 2018;91(9):e859–66.PubMedPubMedCentral
26.
go back to reference Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–63.PubMed Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–63.PubMed
27.
go back to reference Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Progr Neurobiol. 2013;101–102:1–17. Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Progr Neurobiol. 2013;101–102:1–17.
28.
go back to reference Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, et al. Plasma tau levels in Alzheimer’s disease. Alzheimer’s Res Ther. 2013;5:9. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, et al. Plasma tau levels in Alzheimer’s disease. Alzheimer’s Res Ther. 2013;5:9.
29.
go back to reference Herukka SK, Hallikainen M, Soininen H, Pirttilä T. CSF Aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology. 2005;64:1294–7.PubMed Herukka SK, Hallikainen M, Soininen H, Pirttilä T. CSF Aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology. 2005;64:1294–7.PubMed
30.
go back to reference Blennow K, Hampel H. Review CSF markers for incipient Alzheimer’s disease CSF markers for incipient AD. Lancet. 2003;2:605–13. Blennow K, Hampel H. Review CSF markers for incipient Alzheimer’s disease CSF markers for incipient AD. Lancet. 2003;2:605–13.
31.
go back to reference Parnetti L, Chiasserini D, Eusebi P, Giannandrea D, Bellomo G, de Carlo C, et al. Performance of Aβ1-40, Aβ1-42, total tau, and phosphorylated tau as predictors of dementia in a cohort of patients with mild cognitive impairment. J Alzheimer’s Dis. 2012;29:229–38. Parnetti L, Chiasserini D, Eusebi P, Giannandrea D, Bellomo G, de Carlo C, et al. Performance of Aβ1-40, Aβ1-42, total tau, and phosphorylated tau as predictors of dementia in a cohort of patients with mild cognitive impairment. J Alzheimer’s Dis. 2012;29:229–38.
32.
go back to reference Okonkwo OC, Alosco ML, Griffith HR, Mielke MM, Shaw LM, Trojanowski JQ, et al. Cerebrospinal fluid abnormalities and rate of decline in everyday function across the dementia spectrum: normal aging, mild cognitive impairment, and Alzheimer disease. Archiv Neurol. 2010;67:688–96. Okonkwo OC, Alosco ML, Griffith HR, Mielke MM, Shaw LM, Trojanowski JQ, et al. Cerebrospinal fluid abnormalities and rate of decline in everyday function across the dementia spectrum: normal aging, mild cognitive impairment, and Alzheimer disease. Archiv Neurol. 2010;67:688–96.
33.
go back to reference Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimer’s Dement. 2018;14:1470–81. Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimer’s Dement. 2018;14:1470–81.
34.
go back to reference Forlenza OV, Radanovic M, Talib LL, Aprahamian I, Diniz BS, Zetterberg H, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease: diagnostic accuracy and prediction of dementia. Alzheimer’s Dement. 2015;1:455–63. Forlenza OV, Radanovic M, Talib LL, Aprahamian I, Diniz BS, Zetterberg H, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease: diagnostic accuracy and prediction of dementia. Alzheimer’s Dement. 2015;1:455–63.
35.
go back to reference Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on the biomarker core of the Alzheimer’s disease neuroimaging initiative subjects. Alzheimer’s Dement. 2010;6:230–8. Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on the biomarker core of the Alzheimer’s disease neuroimaging initiative subjects. Alzheimer’s Dement. 2010;6:230–8.
36.
go back to reference Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5:228–34.PubMed Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5:228–34.PubMed
37.
go back to reference Chen YX, Liang N, Li XL, Yang SH, Wang YP, Shi NN. Diagnosis and treatment for mild cognitive impairment: a systematic review of clinical practice guidelines and consensus statements. Front Neurol. 2021;12: 719849.PubMedPubMedCentral Chen YX, Liang N, Li XL, Yang SH, Wang YP, Shi NN. Diagnosis and treatment for mild cognitive impairment: a systematic review of clinical practice guidelines and consensus statements. Front Neurol. 2021;12: 719849.PubMedPubMedCentral
38.
go back to reference Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90(8):870–81.PubMed Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90(8):870–81.PubMed
39.
go back to reference Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol. 2020;16(5):265–84.PubMed Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol. 2020;16(5):265–84.PubMed
40.
go back to reference Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlgren N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dage JL, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772–81.PubMed Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlgren N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dage JL, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772–81.PubMed
41.
go back to reference Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Lantero Rodríguez J, Snellman A, Suárez-Calvet M, Blennow K, Zetterberg H, Schöll M, Alzheimer’s Disease Neuroimaging Initiative. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2021;78(4):396–406. Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Lantero Rodríguez J, Snellman A, Suárez-Calvet M, Blennow K, Zetterberg H, Schöll M, Alzheimer’s Disease Neuroimaging Initiative. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2021;78(4):396–406.
42.
go back to reference Quiroz YT, Zetterberg H, Reiman EM, Chen Y, Su Y, Fox-Fuller JT, Garcia G, Villegas A, Sepulveda-Falla D, Villada M, Arboleda-Velasquez JF, Guzmán-Vélez E, Vila-Castelar C, Gordon BA, Schultz SA, Protas HD, Ghisays V, Giraldo M, Tirado V, Baena A, et al. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study. Lancet Neurol. 2020;19(6):513–21.PubMedPubMedCentral Quiroz YT, Zetterberg H, Reiman EM, Chen Y, Su Y, Fox-Fuller JT, Garcia G, Villegas A, Sepulveda-Falla D, Villada M, Arboleda-Velasquez JF, Guzmán-Vélez E, Vila-Castelar C, Gordon BA, Schultz SA, Protas HD, Ghisays V, Giraldo M, Tirado V, Baena A, et al. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study. Lancet Neurol. 2020;19(6):513–21.PubMedPubMedCentral
43.
go back to reference Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, Grinberg LT, Spina S, Kramer JH, Ramos EM, Coppola G, La Joie R, Rabinovici GD, Perry DC, Gorno-Tempini ML, Seeley WW, Miller BL, Rosen 6 HJ, Blennow K, Boxer AL, … Rojas JC. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer disease. Neurology. 2021;96(5), e671–e683. Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, Grinberg LT, Spina S, Kramer JH, Ramos EM, Coppola G, La Joie R, Rabinovici GD, Perry DC, Gorno-Tempini ML, Seeley WW, Miller BL, Rosen 6 HJ, Blennow K, Boxer AL, … Rojas JC. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer disease. Neurology. 2021;96(5), e671–e683.
44.
go back to reference Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557–66. Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557–66.
45.
go back to reference Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H, INSIGHT-preAD study group, & Alzheimer Precision Medicine Initiative (APMI). Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. Alzheimer’s Res Ther. 2020;12(1):147. Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H, INSIGHT-preAD study group, & Alzheimer Precision Medicine Initiative (APMI). Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. Alzheimer’s Res Ther. 2020;12(1):147.
46.
go back to reference Chatterjee S, Mudher A. Alzheimer’s disease and type 2 diabetes: a critical assessment of the shared pathological traits. Front Neurosci. 2018;12:383.PubMedPubMedCentral Chatterjee S, Mudher A. Alzheimer’s disease and type 2 diabetes: a critical assessment of the shared pathological traits. Front Neurosci. 2018;12:383.PubMedPubMedCentral
47.
go back to reference Giacomucci G, Mazzeo S, Bagnoli S, Ingannato A, Leccese D, Berti V, Padiglioni S, Galdo G, Ferrari C, Sorbi S, Bessi V, Nacmias B. Plasma neurofilament light chain as a biomarker of Alzheimer’s disease in subjective cognitive decline and mild cognitive impairment. J Neurol. 2022;269(8):4270–80.PubMedPubMedCentral Giacomucci G, Mazzeo S, Bagnoli S, Ingannato A, Leccese D, Berti V, Padiglioni S, Galdo G, Ferrari C, Sorbi S, Bessi V, Nacmias B. Plasma neurofilament light chain as a biomarker of Alzheimer’s disease in subjective cognitive decline and mild cognitive impairment. J Neurol. 2022;269(8):4270–80.PubMedPubMedCentral
48.
go back to reference Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis. 2008;14(1):27–41. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis. 2008;14(1):27–41.
49.
go back to reference Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill CM, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s Dement. 2019;15(11):1468–77. Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill CM, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s Dement. 2019;15(11):1468–77.
50.
go back to reference Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic review: microRNAs as potential biomarkers in mild cognitive impairment diagnosis. Front Aging Neurosci. 2022;13: 807764.PubMedPubMedCentral Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic review: microRNAs as potential biomarkers in mild cognitive impairment diagnosis. Front Aging Neurosci. 2022;13: 807764.PubMedPubMedCentral
51.
go back to reference Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.PubMed Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.PubMed
52.
go back to reference Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.PubMed Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.PubMed
53.
go back to reference Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, NY). 1993;261(5123):921–3.PubMed Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, NY). 1993;261(5123):921–3.PubMed
54.
go back to reference Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, Wang LS, Romero K, Arneric SP, Redolfi A, Orlandi D, Frisoni GB, Au R, Devine S, Auerbach S, Espinosa A, Boada M, Ruiz A, Johnson SC, Koscik R, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74(10):1178–89.PubMedPubMedCentral Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, Wang LS, Romero K, Arneric SP, Redolfi A, Orlandi D, Frisoni GB, Au R, Devine S, Auerbach S, Espinosa A, Boada M, Ruiz A, Johnson SC, Koscik R, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74(10):1178–89.PubMedPubMedCentral
55.
go back to reference Xu X, Zhang B, Wang X, Zhang Q, Wu X, Zhang J, Bai Y, Gu X. A meta-analysis of Alzheimer’s disease’s relationship with human ApoE gene variants. Am J Translat Res. 2021;13(9):9974–82. Xu X, Zhang B, Wang X, Zhang Q, Wu X, Zhang J, Bai Y, Gu X. A meta-analysis of Alzheimer’s disease’s relationship with human ApoE gene variants. Am J Translat Res. 2021;13(9):9974–82.
56.
go back to reference Qin W, Li W, Wang Q, Gong M, Li T, Shi Y, Song Y, Li Y, Li F, Jia J. Race-related association between APOE genotype and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2021;83(2):897–906. Qin W, Li W, Wang Q, Gong M, Li T, Shi Y, Song Y, Li Y, Li F, Jia J. Race-related association between APOE genotype and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2021;83(2):897–906.
57.
go back to reference Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 2020;59: 102954.PubMedPubMedCentral Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 2020;59: 102954.PubMedPubMedCentral
58.
go back to reference Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, et al. EADI1 Consortium. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.PubMedPubMedCentral Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, et al. EADI1 Consortium. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.PubMedPubMedCentral
59.
go back to reference Kamboh MI, Demirci FY, Wang X, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Alzheimer’s Disease Neuroimaging Initiative, Jun G, Baldwin C, Logue MW, Buros J, Farrer L, Pericak-Vance MA, Haines JL, Sweet RA, Ganguli M, Feingold E, Dekosky ST, et al. Genome-wide association study of Alzheimer’s disease. Transl Psychiatry. 2012;2(5):e117.PubMedPubMedCentral Kamboh MI, Demirci FY, Wang X, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Alzheimer’s Disease Neuroimaging Initiative, Jun G, Baldwin C, Logue MW, Buros J, Farrer L, Pericak-Vance MA, Haines JL, Sweet RA, Ganguli M, Feingold E, Dekosky ST, et al. Genome-wide association study of Alzheimer’s disease. Transl Psychiatry. 2012;2(5):e117.PubMedPubMedCentral
60.
go back to reference Bachli MB, Sedeño L, Ochab JK, Piguet O, Kumfor F, Reyes P, Torralva T, Roca M, Cardona JF, Campo CG, Herrera E, Slachevsky A, Matallana D, Manes F, García AM, Ibáñez A, Chialvo DR. Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach. Neuroimage. 2020;208: 116456.PubMed Bachli MB, Sedeño L, Ochab JK, Piguet O, Kumfor F, Reyes P, Torralva T, Roca M, Cardona JF, Campo CG, Herrera E, Slachevsky A, Matallana D, Manes F, García AM, Ibáñez A, Chialvo DR. Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach. Neuroimage. 2020;208: 116456.PubMed
61.
go back to reference Prado P, Birba A, Cruzat J, Santamaría-García H, Parra M, Moguilner S, Tagliazucchi E, Ibáñez A. Dementia ConnEEGtome: towards multicentric harmonization of EEG connectivity in neurodegeneration. Int J Psychophysiol. 2022;172:24–38.PubMed Prado P, Birba A, Cruzat J, Santamaría-García H, Parra M, Moguilner S, Tagliazucchi E, Ibáñez A. Dementia ConnEEGtome: towards multicentric harmonization of EEG connectivity in neurodegeneration. Int J Psychophysiol. 2022;172:24–38.PubMed
62.
go back to reference Moguilner S, Birba A, Fittipaldi S, Gonzalez-Campo C, Tagliazucchi E, Reyes P, Matallana D, Parra MA, Slachevsky A, Farías G, Cruzat J, García A, Eyre HA, La Joie R, Rabinovici G, Whelan R, & Ibáñez A. Multi-feature computational framework for combined signatures of dementia in underrepresented settings. J Neural Eng. 2022;19(4). https://doi.org/10.1088/1741-2552/ac87d0. Moguilner S, Birba A, Fittipaldi S, Gonzalez-Campo C, Tagliazucchi E, Reyes P, Matallana D, Parra MA, Slachevsky A, Farías G, Cruzat J, García A, Eyre HA, La Joie R, Rabinovici G, Whelan R, & Ibáñez A. Multi-feature computational framework for combined signatures of dementia in underrepresented settings. J Neural Eng. 2022;19(4). https://​doi.​org/​10.​1088/​1741-2552/​ac87d0.
63.
go back to reference Moguilner S, Whelan R, Adams H, Valcour V, Tagliazucchi E, Ibáñez A. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine. 2023;90: 104540.PubMedPubMedCentral Moguilner S, Whelan R, Adams H, Valcour V, Tagliazucchi E, Ibáñez A. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine. 2023;90: 104540.PubMedPubMedCentral
64.
go back to reference Davatzikos C. Machine learning in neuroimaging: Progress and challenges. NeuroImage. 2019;197:652–6.PubMed Davatzikos C. Machine learning in neuroimaging: Progress and challenges. NeuroImage. 2019;197:652–6.PubMed
65.
go back to reference Rebala G, Ravi A, Churiwala S. An Introduction to Machine Learning. 1st ed. Springer Publishing Company, Incorporated. 2019. Rebala G, Ravi A, Churiwala S. An Introduction to Machine Learning. 1st ed. Springer Publishing Company, Incorporated. 2019.
66.
go back to reference Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci. 2021;2(3):160. Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci. 2021;2(3):160.
67.
68.
go back to reference Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: survey, opportunities, and challenges. J Big Data. 2019;6:44. Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: survey, opportunities, and challenges. J Big Data. 2019;6:44.
69.
go back to reference Leonelli S. Data-Centric Biology: A Philosophical Study. London: University of Chicago Press; 2016. Leonelli S. Data-Centric Biology: A Philosophical Study. London: University of Chicago Press; 2016.
70.
go back to reference Partington SN, Papakroni V, Menzies T. Optimizing data collection for public health decisions: a data mining approach. BMC Public Health. 2014;14:593. Partington SN, Papakroni V, Menzies T. Optimizing data collection for public health decisions: a data mining approach. BMC Public Health. 2014;14:593.
71.
go back to reference Zhang A, Xing L, Zou J, Wu JC. Shifting machine learning for healthcare from development to deployment and from models to data. Nat Biomed Eng. 2022;6(12):1330–45. Zhang A, Xing L, Zou J, Wu JC. Shifting machine learning for healthcare from development to deployment and from models to data. Nat Biomed Eng. 2022;6(12):1330–45.
73.
go back to reference Javaid M, Haleem A, Singh RP, Suman R, Rab S. Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 2022;3:58–73. Javaid M, Haleem A, Singh RP, Suman R, Rab S. Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 2022;3:58–73.
74.
go back to reference Reddy S. Explainability and artificial intelligence in medicine. Lancet Digital health. 2022;4(4):e214–5.PubMed Reddy S. Explainability and artificial intelligence in medicine. Lancet Digital health. 2022;4(4):e214–5.PubMed
75.
go back to reference Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer’s disease by using explainable machine learning approach. Sci Rep. 2022;12(1):6508.PubMedPubMedCentral Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer’s disease by using explainable machine learning approach. Sci Rep. 2022;12(1):6508.PubMedPubMedCentral
76.
go back to reference Hayashi Y. The right direction needed to develop white-box deep learning in radiology, pathology, and ophthalmology: a short review. Front Robotics AI. 2019;6:24. Hayashi Y. The right direction needed to develop white-box deep learning in radiology, pathology, and ophthalmology: a short review. Front Robotics AI. 2019;6:24.
77.
go back to reference Carvalho DV, Pereira EM, Cardoso JS. Machine learning interpretability: a survey on methods and metrics. Electronics. 2019;8(8):832. Carvalho DV, Pereira EM, Cardoso JS. Machine learning interpretability: a survey on methods and metrics. Electronics. 2019;8(8):832.
78.
go back to reference Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Int J Inf Fusion. 2022;77:29–52. Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Int J Inf Fusion. 2022;77:29–52.
79.
go back to reference Krishnan M. Against interpretability: a critical examination of the interpretability problem in machine learning. Philos Technol. 2020;33:487–502. Krishnan M. Against interpretability: a critical examination of the interpretability problem in machine learning. Philos Technol. 2020;33:487–502.
80.
go back to reference Shanthamallu US, Spanias A. Machine and Deep Learning Applications. In: Machine and Deep Learning Algorithms and Applications. Synthesis Lectures on Signal Processing. Cham: Springer; 2022. Shanthamallu US, Spanias A. Machine and Deep Learning Applications. In: Machine and Deep Learning Algorithms and Applications. Synthesis Lectures on Signal Processing. Cham: Springer; 2022.
81.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. Stanford: Stanford University; 2009. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. Stanford: Stanford University; 2009.
82.
go back to reference Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Wadsworth: Chapman and Hall; 1984. Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Wadsworth: Chapman and Hall; 1984.
83.
go back to reference Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
84.
go back to reference Breiman L. Random forests. Mach Learn. 2001;45:5–32. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
85.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed
86.
go back to reference Fisher RA. On the mathematical foundations of theoretical statistics. Philos Trans Royal Soc London, Ser A. 1922;222:309–68. Fisher RA. On the mathematical foundations of theoretical statistics. Philos Trans Royal Soc London, Ser A. 1922;222:309–68.
87.
go back to reference Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Se B (Methodol). 1996;58(1):267–88. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Se B (Methodol). 1996;58(1):267–88.
88.
go back to reference Hoerl A, Kennard R. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12:55–67. Hoerl A, Kennard R. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12:55–67.
89.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.
90.
go back to reference Redolfi A, De Francesco S, Palesi F, Galluzzi S, Muscio C, Castellazzi G, Tiraboschi P, Savini G, Nigri A, Bottini G, Bruzzone MG, Ramusino MC, Ferraro S, Gandini Wheeler-Kingshott CAM, Tagliavini F, Frisoni GB, Ryvlin P, Demonet JF, Kherif F, Cappa SF, et al. Medical Informatics Platform (MIP): a pilot study across clinical Italian cohorts. Front Neurol. 2020;11:1021.PubMedPubMedCentral Redolfi A, De Francesco S, Palesi F, Galluzzi S, Muscio C, Castellazzi G, Tiraboschi P, Savini G, Nigri A, Bottini G, Bruzzone MG, Ramusino MC, Ferraro S, Gandini Wheeler-Kingshott CAM, Tagliavini F, Frisoni GB, Ryvlin P, Demonet JF, Kherif F, Cappa SF, et al. Medical Informatics Platform (MIP): a pilot study across clinical Italian cohorts. Front Neurol. 2020;11:1021.PubMedPubMedCentral
91.
go back to reference Sh Y, Liu B, Zhang J, Zhou Y, Hu Z, Zhang X. Application of artificial intelligence modeling technology based on fluid biopsy to diagnose Alzheimer’s disease. Front Aging Neurosci. 2021;13: 768229.PubMedPubMedCentral Sh Y, Liu B, Zhang J, Zhou Y, Hu Z, Zhang X. Application of artificial intelligence modeling technology based on fluid biopsy to diagnose Alzheimer’s disease. Front Aging Neurosci. 2021;13: 768229.PubMedPubMedCentral
92.
go back to reference Khatri U, Kwon GR. An efficient combination among sMRI, CSF, cognitive score, and APOE ε4 biomarkers for classification of AD and MCI using extreme learning machine. Comput Intell Neurosci. 2020;2020:8015156.PubMedPubMedCentral Khatri U, Kwon GR. An efficient combination among sMRI, CSF, cognitive score, and APOE ε4 biomarkers for classification of AD and MCI using extreme learning machine. Comput Intell Neurosci. 2020;2020:8015156.PubMedPubMedCentral
93.
go back to reference Barbará-Morales E, Pérez-González J, Rojas-Saavedra KC, Medina-Bañuelos V. Evaluation of brain tortuosity measurement for the automatic multimodal classification of subjects with Alzheimer’s disease. Comput Intell Neurosci. 2020;2020:4041832.PubMedPubMedCentral Barbará-Morales E, Pérez-González J, Rojas-Saavedra KC, Medina-Bañuelos V. Evaluation of brain tortuosity measurement for the automatic multimodal classification of subjects with Alzheimer’s disease. Comput Intell Neurosci. 2020;2020:4041832.PubMedPubMedCentral
94.
go back to reference Martínez-Torteya A, Treviño V, Tamez-Peña JG. Improved diagnostic multimodal biomarkers for Alzheimer’s disease and mild cognitive impairment. Biomed Res Int. 2015;2015: 961314.PubMedPubMedCentral Martínez-Torteya A, Treviño V, Tamez-Peña JG. Improved diagnostic multimodal biomarkers for Alzheimer’s disease and mild cognitive impairment. Biomed Res Int. 2015;2015: 961314.PubMedPubMedCentral
95.
go back to reference Ficiarà E, Boschi S, Ansari S, D’Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine learning profiling of Alzheimer’s disease patients based on current cerebrospinal fluid markers and iron content in biofluids. Front Aging Neurosci. 2021;13: 607858.PubMedPubMedCentral Ficiarà E, Boschi S, Ansari S, D’Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine learning profiling of Alzheimer’s disease patients based on current cerebrospinal fluid markers and iron content in biofluids. Front Aging Neurosci. 2021;13: 607858.PubMedPubMedCentral
96.
go back to reference Jääskeläinen O, Hall A, Tiainen M, van Gils M, Lötjönen J, Kangas AJ, Helisalmi S, Pikkarainen M, Hallikainen M, Koivisto A, Hartikainen P, Hiltunen M, Ala-Korpela M, Soininen P, Soininen H, Herukka SK. Metabolic profiles help discriminate mild cognitive impairment from dementia stage in Alzheimer’s disease. J Alzheimer’s Dis. 2020;74(1):277–86. Jääskeläinen O, Hall A, Tiainen M, van Gils M, Lötjönen J, Kangas AJ, Helisalmi S, Pikkarainen M, Hallikainen M, Koivisto A, Hartikainen P, Hiltunen M, Ala-Korpela M, Soininen P, Soininen H, Herukka SK. Metabolic profiles help discriminate mild cognitive impairment from dementia stage in Alzheimer’s disease. J Alzheimer’s Dis. 2020;74(1):277–86.
97.
go back to reference Olazarán J, Gil-de-Gómez L, Rodríguez-Martín A, Valentí-Soler M, Frades-Payo B, Marín-Muñoz J, Antúnez C, Frank-García A, Acedo-Jiménez C, Morlán-Gracia L, Petidier-Torregrossa R, Guisasola MC, Bermejo-Pareja F, Sánchez-Ferro Á, Pérez-Martínez DA, Manzano-Palomo S, Farquhar R, Rábano A, Calero M. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J Alzheimer’s Dis. 2015;45(4):1157–73. Olazarán J, Gil-de-Gómez L, Rodríguez-Martín A, Valentí-Soler M, Frades-Payo B, Marín-Muñoz J, Antúnez C, Frank-García A, Acedo-Jiménez C, Morlán-Gracia L, Petidier-Torregrossa R, Guisasola MC, Bermejo-Pareja F, Sánchez-Ferro Á, Pérez-Martínez DA, Manzano-Palomo S, Farquhar R, Rábano A, Calero M. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J Alzheimer’s Dis. 2015;45(4):1157–73.
98.
go back to reference Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D, Alzheimer’s Disease Neuroimaging Initiative. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage. 2013;65:167–75. Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D, Alzheimer’s Disease Neuroimaging Initiative. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage. 2013;65:167–75.
99.
go back to reference Zhao X, Kang J, Svetnik V, Warden D, Wilcock G, David Smith A, Savage MJ, Laterza OF. A machine learning approach to identify a circulating MicroRNA signature for Alzheimer disease. J Appl Lab Med. 2020;5(1):15–28.PubMed Zhao X, Kang J, Svetnik V, Warden D, Wilcock G, David Smith A, Savage MJ, Laterza OF. A machine learning approach to identify a circulating MicroRNA signature for Alzheimer disease. J Appl Lab Med. 2020;5(1):15–28.PubMed
101.
102.
go back to reference Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, Seyfried NT, Gearing M, Hales CM, Levey AI, Lah JJ, Lee EK, Alzheimer’s Disease Neuro-Imaging Initiative. CSF complement 3 and factor H are staging biomarkers in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4:14. Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, Seyfried NT, Gearing M, Hales CM, Levey AI, Lah JJ, Lee EK, Alzheimer’s Disease Neuro-Imaging Initiative. CSF complement 3 and factor H are staging biomarkers in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4:14.
103.
go back to reference Yilmaz A, Ugur Z, Bisgin H, Akyol S, Bahado-Singh R, Wilson G, Imam K, Maddens ME, Graham SF. Targeted metabolic profiling of urine highlights a potential biomarker panel for the diagnosis of Alzheimer’s disease and mild cognitive impairment: a pilot study. Metabolites. 2020;10(9):357.PubMedPubMedCentral Yilmaz A, Ugur Z, Bisgin H, Akyol S, Bahado-Singh R, Wilson G, Imam K, Maddens ME, Graham SF. Targeted metabolic profiling of urine highlights a potential biomarker panel for the diagnosis of Alzheimer’s disease and mild cognitive impairment: a pilot study. Metabolites. 2020;10(9):357.PubMedPubMedCentral
104.
go back to reference Peña-Bautista C, Durand T, Oger C, Baquero M, Vento M, Cháfer-Pericás C. Assessment of lipid peroxidation and artificial neural network models in early Alzheimer disease diagnosis. Clin Biochem. 2019;72:64–70.PubMed Peña-Bautista C, Durand T, Oger C, Baquero M, Vento M, Cháfer-Pericás C. Assessment of lipid peroxidation and artificial neural network models in early Alzheimer disease diagnosis. Clin Biochem. 2019;72:64–70.PubMed
105.
go back to reference Dong A, Li Z, Wang M, Shen D, Liu M. High-order Laplacian regularized low-rank representation for multimodal dementia diagnosis. Front Neurosci. 2021;15: 634124.PubMedPubMedCentral Dong A, Li Z, Wang M, Shen D, Liu M. High-order Laplacian regularized low-rank representation for multimodal dementia diagnosis. Front Neurosci. 2021;15: 634124.PubMedPubMedCentral
106.
go back to reference Chang CH, Lin CH, Liu CY, Huang CS, Chen SJ, Lin WC, Yang HT, Lane HY. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer’s disease: machine learning approaches. J Psychopharmacol (Oxford, England). 2021;35(3):265–72. Chang CH, Lin CH, Liu CY, Huang CS, Chen SJ, Lin WC, Yang HT, Lane HY. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer’s disease: machine learning approaches. J Psychopharmacol (Oxford, England). 2021;35(3):265–72.
107.
go back to reference Santangelo R, Masserini F, Agosta F, Sala A, Caminiti SP, Cecchetti G, Caso F, Martinelli V, Pinto P, Passerini G, Perani D, Magnani G, Filippi M. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging. 2020;47(13):3152–64.PubMed Santangelo R, Masserini F, Agosta F, Sala A, Caminiti SP, Cecchetti G, Caso F, Martinelli V, Pinto P, Passerini G, Perani D, Magnani G, Filippi M. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging. 2020;47(13):3152–64.PubMed
108.
go back to reference Abate G, Vezzoli M, Polito L, Guaita A, Albani D, Marizzoni M, Garrafa E, Marengoni A, Forloni G, Frisoni GB, Cummings JL, Memo M, Uberti D. A conformation variant of p53 combined with machine learning identifies Alzheimer disease in preclinical and prodromal stages. J Pers Med. 2020;11(1):14.PubMedPubMedCentral Abate G, Vezzoli M, Polito L, Guaita A, Albani D, Marizzoni M, Garrafa E, Marengoni A, Forloni G, Frisoni GB, Cummings JL, Memo M, Uberti D. A conformation variant of p53 combined with machine learning identifies Alzheimer disease in preclinical and prodromal stages. J Pers Med. 2020;11(1):14.PubMedPubMedCentral
109.
go back to reference Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134: 104478.PubMed Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134: 104478.PubMed
110.
go back to reference Devanarayan P, Devanarayan V, Llano DA, Alzheimer’s Disease Neuroimaging Initiative. Identification of a simple and novel cut-point based cerebrospinal fluid and MRI signature for predicting Alzheimer’s disease progression that reinforces the 2018 NIA-AA Research Framework. J Alzheimer’s Dis. 2019;68(2):537–50. Devanarayan P, Devanarayan V, Llano DA, Alzheimer’s Disease Neuroimaging Initiative. Identification of a simple and novel cut-point based cerebrospinal fluid and MRI signature for predicting Alzheimer’s disease progression that reinforces the 2018 NIA-AA Research Framework. J Alzheimer’s Dis. 2019;68(2):537–50.
111.
go back to reference Iddi S, Li D, Aisen PS, Rafii MS, Thompson WK, Donohue MC, Alzheimer’s Disease Neuroimaging Initiative. Predicting the course of Alzheimer’s progression. Brain informatics. 2019;6(1):6. Iddi S, Li D, Aisen PS, Rafii MS, Thompson WK, Donohue MC, Alzheimer’s Disease Neuroimaging Initiative. Predicting the course of Alzheimer’s progression. Brain informatics. 2019;6(1):6.
112.
go back to reference Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, Du M, Tong T. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front Aging Neurosci. 2020;12:77.PubMedPubMedCentral Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, Du M, Tong T. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front Aging Neurosci. 2020;12:77.PubMedPubMedCentral
113.
go back to reference Mathotaarachchi S, Pascoal TA, Shin M, Benedet AL, Kang MS, Beaudry T, Fonov VS, Gauthier S, Rosa-Neto P, Alzheimer’s Disease Neuroimaging Initiative. Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol Aging. 2017;59:80–90. Mathotaarachchi S, Pascoal TA, Shin M, Benedet AL, Kang MS, Beaudry T, Fonov VS, Gauthier S, Rosa-Neto P, Alzheimer’s Disease Neuroimaging Initiative. Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol Aging. 2017;59:80–90.
114.
go back to reference Gupta Y, Lama RK, Kwon GR, Alzheimer’s Disease Neuroimaging Initiative. Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci. 2019;13:72. Gupta Y, Lama RK, Kwon GR, Alzheimer’s Disease Neuroimaging Initiative. Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci. 2019;13:72.
115.
go back to reference Zhang D, Shen D, Alzheimer’s Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage. 2012;59(2):895–907. Zhang D, Shen D, Alzheimer’s Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage. 2012;59(2):895–907.
116.
go back to reference Eke CS, Jammeh E, Li X, Carroll C, Pearson S, Ifeachor E. Early detection of Alzheimer’s disease with blood plasma proteins using support vector machines. IEEE J Biomed Health Inform. 2021;25(1):218–26.PubMed Eke CS, Jammeh E, Li X, Carroll C, Pearson S, Ifeachor E. Early detection of Alzheimer’s disease with blood plasma proteins using support vector machines. IEEE J Biomed Health Inform. 2021;25(1):218–26.PubMed
117.
go back to reference Cheng B, Liu M, Suk HI, Shen D, Zhang D, Alzheimer’s Disease Neuroimaging Initiative. Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging Behav. 2015;9(4):913–26.PubMedPubMedCentral Cheng B, Liu M, Suk HI, Shen D, Zhang D, Alzheimer’s Disease Neuroimaging Initiative. Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging Behav. 2015;9(4):913–26.PubMedPubMedCentral
118.
go back to reference Escudero J, Ifeachor E, Zajicek JP, Green C, Shearer J, Pearson S, Alzheimer’s Disease Neuroimaging Initiative. Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease. IEEE Trans Biomed Eng. 2013;60(1):164–8.PubMed Escudero J, Ifeachor E, Zajicek JP, Green C, Shearer J, Pearson S, Alzheimer’s Disease Neuroimaging Initiative. Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease. IEEE Trans Biomed Eng. 2013;60(1):164–8.PubMed
119.
go back to reference Fawcett T. An Introduction to ROC Analysis. Pattern Recognit Lett. 2006;27:861–74. Fawcett T. An Introduction to ROC Analysis. Pattern Recognit Lett. 2006;27:861–74.
120.
go back to reference Dinov ID. Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines. In: Data Science and Predictive Analytics. Cham: Springer; 2018. Dinov ID. Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines. In: Data Science and Predictive Analytics. Cham: Springer; 2018.
121.
go back to reference Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog. 2022;105(1):368504211029777.PubMed Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog. 2022;105(1):368504211029777.PubMed
122.
go back to reference Wang H, Zheng H. Model testing, machine learning. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H, editors. Encyclopedia of Systems Biology. New York: Springer; 2013. Wang H, Zheng H. Model testing, machine learning. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H, editors. Encyclopedia of Systems Biology. New York: Springer; 2013.
123.
go back to reference Bi Y, Abrol A, Fu Z, Chen J, Liu J, Calhoun V. Prediction of gender from longitudinal MRI data via deep learning on adolescent data reveals unique patterns associated with brain structure and change over a two-year period. J Neurosci Methods. 2023;384: 109744.PubMed Bi Y, Abrol A, Fu Z, Chen J, Liu J, Calhoun V. Prediction of gender from longitudinal MRI data via deep learning on adolescent data reveals unique patterns associated with brain structure and change over a two-year period. J Neurosci Methods. 2023;384: 109744.PubMed
124.
go back to reference Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA. Risk factors for the progression of mild cognitive impairment to dementia. Clin Geriatr Med. 2013;29:873–93.PubMedPubMedCentral Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA. Risk factors for the progression of mild cognitive impairment to dementia. Clin Geriatr Med. 2013;29:873–93.PubMedPubMedCentral
125.
go back to reference Dunne RA, Aarsland D, O’Brien JT, Ballard C, Banerjee S, Fox NC, et al. Mild cognitive impairment: the manchester consensus. Age Ageing. 2021;50:72–80.PubMed Dunne RA, Aarsland D, O’Brien JT, Ballard C, Banerjee S, Fox NC, et al. Mild cognitive impairment: the manchester consensus. Age Ageing. 2021;50:72–80.PubMed
126.
go back to reference Bonilla-Santos J, Zea-Romero E, González-Hernández A, Cala-Martínez D. Cognitive, biological, anatomical and behavioral markers of mild cognitive impairment and Alzheimer’s disease. A systematic review. Ecuat Neurol. 2021;30(2):57–67. Bonilla-Santos J, Zea-Romero E, González-Hernández A, Cala-Martínez D. Cognitive, biological, anatomical and behavioral markers of mild cognitive impairment and Alzheimer’s disease. A systematic review. Ecuat Neurol. 2021;30(2):57–67.
127.
go back to reference Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, et al. Australian Imaging Biomarker and Lifestyle Research Group. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012;69(10):1318–25.PubMedPubMedCentral Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, et al. Australian Imaging Biomarker and Lifestyle Research Group. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012;69(10):1318–25.PubMedPubMedCentral
128.
go back to reference Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthetic Dermatol. 2014;7(6):13–24. Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthetic Dermatol. 2014;7(6):13–24.
129.
go back to reference Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, Adams HHH, Ikram MA, Niessen WJ, Roshchupkin GV. Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci USA. 2019;116(42):21213–8.PubMedPubMedCentral Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, Adams HHH, Ikram MA, Niessen WJ, Roshchupkin GV. Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci USA. 2019;116(42):21213–8.PubMedPubMedCentral
130.
go back to reference O’Driscoll C, Shaikh M. Cross-cultural applicability of the Montreal Cognitive Assessment (MoCA): a systematic review. J Alzheimer’s Dis. 2017;58(3):789–801. O’Driscoll C, Shaikh M. Cross-cultural applicability of the Montreal Cognitive Assessment (MoCA): a systematic review. J Alzheimer’s Dis. 2017;58(3):789–801.
131.
go back to reference Gagnon LG, Belleville S. Working memory in mild cognitive impairment and Alzheimer’s disease: contribution of forgetting and predictive value of complex span tasks. Neuropsychology. 2011;25(2):226–36.PubMed Gagnon LG, Belleville S. Working memory in mild cognitive impairment and Alzheimer’s disease: contribution of forgetting and predictive value of complex span tasks. Neuropsychology. 2011;25(2):226–36.PubMed
132.
go back to reference Peña-Bautista C, Baquero M, Ferrer I, Hervás D, Vento M, García-Blanco A, Cháfer-Pericás C. Neuropsychological assessment and cortisol levels in biofluids from early Alzheimer’s disease patients. Exp Gerontol. 2019;123:10–6.PubMed Peña-Bautista C, Baquero M, Ferrer I, Hervás D, Vento M, García-Blanco A, Cháfer-Pericás C. Neuropsychological assessment and cortisol levels in biofluids from early Alzheimer’s disease patients. Exp Gerontol. 2019;123:10–6.PubMed
133.
go back to reference Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC, Macaulay SL, Masters CL, Hill AF, Australian Imaging, Biomarkers and Lifestyle (AIBL) Research Group. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 2015;20(10):1188–96.PubMed Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC, Macaulay SL, Masters CL, Hill AF, Australian Imaging, Biomarkers and Lifestyle (AIBL) Research Group. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 2015;20(10):1188–96.PubMed
134.
go back to reference Ardila A. Cross-cultural neuropsychology: history and prospects. RUDN J Psychol Pedagogics. 2020;17(1):64–78. Ardila A. Cross-cultural neuropsychology: history and prospects. RUDN J Psychol Pedagogics. 2020;17(1):64–78.
135.
go back to reference 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327–406.
136.
go back to reference Rosselli M, Uribe IV, Ahne E, Shihadeh L. Culture, ethnicity, and level of education in Alzheimer’s disease. Neurotherapeutics. 2022;19(1):26–54.PubMedPubMedCentral Rosselli M, Uribe IV, Ahne E, Shihadeh L. Culture, ethnicity, and level of education in Alzheimer’s disease. Neurotherapeutics. 2022;19(1):26–54.PubMedPubMedCentral
137.
go back to reference Parra MA, Orellana P, Leon T, Victoria CG, Henriquez F, Gomez R, Avalos C, Damian A, Slachevsky A, Ibañez A, Zetterberg H, Tijms BM, Yokoyama JS, Piña-Escudero SD, Cochran JN, Matallana DL, Acosta D, Allegri R, Arias-Suárez BP, Barra B, et al. Biomarkers for dementia in Latin American countries: gaps and opportunities. Alzheimer’s Dement. 2023;19(2):721–35. Parra MA, Orellana P, Leon T, Victoria CG, Henriquez F, Gomez R, Avalos C, Damian A, Slachevsky A, Ibañez A, Zetterberg H, Tijms BM, Yokoyama JS, Piña-Escudero SD, Cochran JN, Matallana DL, Acosta D, Allegri R, Arias-Suárez BP, Barra B, et al. Biomarkers for dementia in Latin American countries: gaps and opportunities. Alzheimer’s Dement. 2023;19(2):721–35.
138.
go back to reference Luria AR, Vygotsky LS. Ape, primitive man and child, 1930/1992. Great Britain: Harvester Wheatsheaf; 1930/1992. Luria AR, Vygotsky LS. Ape, primitive man and child, 1930/1992. Great Britain: Harvester Wheatsheaf; 1930/1992.
139.
go back to reference Vygotsky LS. “Psikhologija i uchenije o localizacii psikhicheskih funktcii” in L.S. Vygotsky. Sobranije sochinenii. Vol. 1 Voprosy teorii i istorii psikhologii. eds. A. R. Luria and Jaroshevskii (Moscow: Pedagogika), 168–174. (Original work published in 1934); 1934/1982. Vygotsky LS. “Psikhologija i uchenije o localizacii psikhicheskih funktcii” in L.S. Vygotsky. Sobranije sochinenii. Vol. 1 Voprosy teorii i istorii psikhologii. eds. A. R. Luria and Jaroshevskii (Moscow: Pedagogika), 168–174. (Original work published in 1934); 1934/1982.
140.
go back to reference Poortinga YH. Equivalence of cross-cultural data: an overview of basic issues. Int J Psychol. 1989;24(6):737–56.PubMed Poortinga YH. Equivalence of cross-cultural data: an overview of basic issues. Int J Psychol. 1989;24(6):737–56.PubMed
141.
go back to reference Pollet TV, Tybur JM, Frankenhuis WE, Rickard IJ. What can cross-cultural correlations teach us about human nature? Hum Nat (Hawthorne, NY). 2014;25(3):410–29. Pollet TV, Tybur JM, Frankenhuis WE, Rickard IJ. What can cross-cultural correlations teach us about human nature? Hum Nat (Hawthorne, NY). 2014;25(3):410–29.
142.
go back to reference Parra MA, Garcia AM, Ibanez A Sr, LAC-CD. Addressing dementia challenges through international networks: evidence from the Latin American and Caribbean Consortium on Dementia (LAC-CD). Alzheimer’s Dement. 2021;17(Suppl 8): e055106. Parra MA, Garcia AM, Ibanez A Sr, LAC-CD. Addressing dementia challenges through international networks: evidence from the Latin American and Caribbean Consortium on Dementia (LAC-CD). Alzheimer’s Dement. 2021;17(Suppl 8): e055106.
143.
go back to reference Luria AR. The human brain and psychological processes. Ney York: Harper & Row; 1966. Luria AR. The human brain and psychological processes. Ney York: Harper & Row; 1966.
144.
go back to reference Gigerenzer G, Marewski JN. Surrogate science: the idol of a universal method for scientific inference. J Manag. 2015;41(2):421–40. Gigerenzer G, Marewski JN. Surrogate science: the idol of a universal method for scientific inference. J Manag. 2015;41(2):421–40.
145.
go back to reference Pearl J. Theoretical impediments to machine learning with seven sparks from the causal revolution. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ‘18). New York: Association for Computing Machinery; 2018. p. 3. Pearl J. Theoretical impediments to machine learning with seven sparks from the causal revolution. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ‘18). New York: Association for Computing Machinery; 2018. p. 3.
146.
go back to reference Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11(1):3923.PubMedPubMedCentral Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11(1):3923.PubMedPubMedCentral
147.
go back to reference McLachlan S, Dube K, Hitman GA, Fenton NE, Kyrimi E. Bayesian networks in healthcare: distribution by medical condition. Artif Intell Med. 2020;107: 101912.PubMed McLachlan S, Dube K, Hitman GA, Fenton NE, Kyrimi E. Bayesian networks in healthcare: distribution by medical condition. Artif Intell Med. 2020;107: 101912.PubMed
148.
go back to reference Parra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría-García H, Aprahamian I, Bertolucci PH, Bustin J, Camargos Bicalho MA, Cano-Gutierrez C, Caramelli P, Chaves MLF, Cogram P, Beber BC, Court FA, de Souza LC, Custodio N, Damian A, de la Cruz M, Diehl Rodriguez R, et al. Dementia in Latin America: paving the way toward a regional action plan. Alzheimer’s Dement. 2021;17(2):295–313. Parra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría-García H, Aprahamian I, Bertolucci PH, Bustin J, Camargos Bicalho MA, Cano-Gutierrez C, Caramelli P, Chaves MLF, Cogram P, Beber BC, Court FA, de Souza LC, Custodio N, Damian A, de la Cruz M, Diehl Rodriguez R, et al. Dementia in Latin America: paving the way toward a regional action plan. Alzheimer’s Dement. 2021;17(2):295–313.
149.
go back to reference Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, Custodio N, Lira D, Piguet O, Kumfor F, Huepe D, Cogram P, Bak T, Manes F, Ibanez A. Dementia in Latin America: assessing the present and envisioning the future. Neurology. 2018;90(5):222–31.PubMedPubMedCentral Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, Custodio N, Lira D, Piguet O, Kumfor F, Huepe D, Cogram P, Bak T, Manes F, Ibanez A. Dementia in Latin America: assessing the present and envisioning the future. Neurology. 2018;90(5):222–31.PubMedPubMedCentral
Metadata
Title
Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease
Authors
Kevin Blanco
Stefanny Salcidua
Paulina Orellana
Tania Sauma-Pérez
Tomás León
Lorena Cecilia López Steinmetz
Agustín Ibañez
Claudia Duran-Aniotz
Rolando de la Cruz
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01304-8

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue