Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease

Authors: Francheska Delgado-Peraza, Carlos Nogueras-Ortiz, Anja Hviid Simonsen, De’Larrian DeAnté Knight, Pamela J. Yao, Edward J. Goetzl, Camilla Steen Jensen, Peter Høgh, Hanne Gottrup, Karsten Vestergaard, Steen Gregers Hasselbalch, Dimitrios Kapogiannis

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Neuron-derived extracellular vesicles (NDEVs) in blood may be used to derive biomarkers for the effects of exercise in Alzheimer’s disease (AD). For this purpose, we studied changes in neuroprotective proteins proBDNF, BDNF, and humanin in plasma NDEVs from patients with mild to moderate AD participating in the randomized controlled trial (RCT) of exercise ADEX.

Methods

proBDNF, BDNF, and humanin were quantified in NDEVs immunocaptured from the plasma of 95 ADEX participants, randomized into exercise and control groups, and collected at baseline and 16 weeks. Exploratorily, we also quantified NDEV levels of putative exerkines known to respond to exercise in peripheral tissues.

Results

NDEV levels of proBDNF, BDNF, and humanin increased in the exercise group, especially in APOE ε4 carriers, but remained unchanged in the control group. Inter-correlations between NDEV biomarkers observed at baseline were maintained after exercise. NDEV levels of putative exerkines remained unchanged.

Conclusions

Findings suggest that the cognitive benefits of exercise could be mediated by the upregulation of neuroprotective factors in NDEVs. Additionally, our results indicate that AD subjects carrying APOE ε4 are more responsive to the neuroprotective effects of physical activity. Unchanged NDEV levels of putative exerkines after physical activity imply that exercise engages different pathways in neurons and peripheral tissues. Future studies should aim to expand upon the effects of exercise duration, intensity, and type in NDEVs from patients with early AD and additional neurodegenerative disorders.

Trial registration

The Effect of Physical Exercise in Alzheimer Patients (ADEX) was registered in ClinicalTrials.gov on April 30, 2012 with the identifier NCT01681602.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Licher S, Ahmad S, Karamujic-Comic H, Voortman T, Leening MJG, Ikram MA, et al. Genetic predisposition, modifiable-risk-factor profile and long-term dementia risk in the general population. Nat Med. 2019;25(9):1364–9.PubMedPubMedCentralCrossRef Licher S, Ahmad S, Karamujic-Comic H, Voortman T, Leening MJG, Ikram MA, et al. Genetic predisposition, modifiable-risk-factor profile and long-term dementia risk in the general population. Nat Med. 2019;25(9):1364–9.PubMedPubMedCentralCrossRef
2.
go back to reference Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.PubMedCrossRef Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.PubMedCrossRef
3.
go back to reference Gaitan JM, Boots EA, Dougherty RJ, Oh JM, Ma Y, Edwards DF, et al. Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease. Brain Plast. 2019;5(1):83–95.PubMedPubMedCentralCrossRef Gaitan JM, Boots EA, Dougherty RJ, Oh JM, Ma Y, Edwards DF, et al. Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease. Brain Plast. 2019;5(1):83–95.PubMedPubMedCentralCrossRef
4.
go back to reference Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. J Alzheimers Dis. 2016;50(2):443–53.PubMedCrossRef Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. J Alzheimers Dis. 2016;50(2):443–53.PubMedCrossRef
5.
go back to reference Sobol NA, Dall CH, Hogh P, Hoffmann K, Frederiksen KS, Vogel A, et al. Change in fitness and the relation to change in cognition and neuropsychiatric symptoms after aerobic exercise in patients with mild Alzheimer’s disease. J Alzheimers Dis. 2018;65(1):137–45.PubMedPubMedCentralCrossRef Sobol NA, Dall CH, Hogh P, Hoffmann K, Frederiksen KS, Vogel A, et al. Change in fitness and the relation to change in cognition and neuropsychiatric symptoms after aerobic exercise in patients with mild Alzheimer’s disease. J Alzheimers Dis. 2018;65(1):137–45.PubMedPubMedCentralCrossRef
6.
go back to reference Sobol NA, Hoffmann K, Vogel A, Lolk A, Gottrup H, Hogh P, et al. Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer’s disease. Aging Ment Health. 2016;20(11):1139–46.PubMedCrossRef Sobol NA, Hoffmann K, Vogel A, Lolk A, Gottrup H, Hogh P, et al. Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer’s disease. Aging Ment Health. 2016;20(11):1139–46.PubMedCrossRef
7.
go back to reference Hoffmann K, Frederiksen KS, Sobol NA, Beyer N, Vogel A, Simonsen AH, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer’s disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3–4):198–207.PubMedCrossRef Hoffmann K, Frederiksen KS, Sobol NA, Beyer N, Vogel A, Simonsen AH, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer’s disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3–4):198–207.PubMedCrossRef
8.
go back to reference Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Braendgaard H, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimers Dement. 2016;12(12):1207–15.PubMedCrossRef Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Braendgaard H, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimers Dement. 2016;12(12):1207–15.PubMedCrossRef
9.
go back to reference Steen Jensen C, Portelius E, Siersma V, Hogh P, Wermuth L, Blennow K, et al. Cerebrospinal fluid amyloid beta and tau concentrations are not modulated by 16 weeks of moderate- to high-intensity physical exercise in patients with Alzheimer disease. Dement Geriatr Cogn Disord. 2016;42(3–4):146–58.PubMedCrossRef Steen Jensen C, Portelius E, Siersma V, Hogh P, Wermuth L, Blennow K, et al. Cerebrospinal fluid amyloid beta and tau concentrations are not modulated by 16 weeks of moderate- to high-intensity physical exercise in patients with Alzheimer disease. Dement Geriatr Cogn Disord. 2016;42(3–4):146–58.PubMedCrossRef
10.
go back to reference Jensen CS, Portelius E, Hogh P, Wermuth L, Blennow K, Zetterberg H, et al. Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(2):284–90.PubMedCrossRef Jensen CS, Portelius E, Hogh P, Wermuth L, Blennow K, Zetterberg H, et al. Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(2):284–90.PubMedCrossRef
11.
go back to reference Frederiksen KS, Jensen CS, Hogh P, Gergelyffy R, Waldemar G, Andersen BB, et al. Aerobic exercise does not affect serum neurofilament light in patients with mild Alzheimer’s disease. Front Neurosci. 2023;17:1108191.PubMedPubMedCentralCrossRef Frederiksen KS, Jensen CS, Hogh P, Gergelyffy R, Waldemar G, Andersen BB, et al. Aerobic exercise does not affect serum neurofilament light in patients with mild Alzheimer’s disease. Front Neurosci. 2023;17:1108191.PubMedPubMedCentralCrossRef
12.
go back to reference Jensen CS, Bahl JM, Ostergaard LB, Hogh P, Wermuth L, Heslegrave A, et al. Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp Gerontol. 2019;121:91–8.PubMedCrossRef Jensen CS, Bahl JM, Ostergaard LB, Hogh P, Wermuth L, Heslegrave A, et al. Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp Gerontol. 2019;121:91–8.PubMedCrossRef
13.
go back to reference Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol. 2016;12(9):504–17.PubMedCrossRef Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol. 2016;12(9):504–17.PubMedCrossRef
14.
go back to reference Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem. 2005;93(6):1412–21.PubMedCrossRef Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem. 2005;93(6):1412–21.PubMedCrossRef
15.
go back to reference Dickens AM, Tovar YRLB, Yoo SW, Trout AL, Bae M, Kanmogne M, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017;10(473). Dickens AM, Tovar YRLB, Yoo SW, Trout AL, Bae M, Kanmogne M, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017;10(473).
16.
go back to reference Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25(5):702–9.PubMedPubMedCentralCrossRef Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25(5):702–9.PubMedPubMedCentralCrossRef
17.
go back to reference Bhargava P, Nogueras-Ortiz C, Kim S, Delgado-Peraza F, Calabresi PA, Kapogiannis D. Synaptic and complement markers in extracellular vesicles in multiple sclerosis. Mult Scler. 2021;27(4):509–18.PubMedCrossRef Bhargava P, Nogueras-Ortiz C, Kim S, Delgado-Peraza F, Calabresi PA, Kapogiannis D. Synaptic and complement markers in extracellular vesicles in multiple sclerosis. Mult Scler. 2021;27(4):509–18.PubMedCrossRef
18.
go back to reference Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain. 2022;146(1):195–208. Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain. 2022;146(1):195–208.
19.
go back to reference Lee Y, Mansur RB, Brietzke E, Kapogiannis D, Delgado-Peraza F, Boutilier JJ, et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry. 2021;26(7):3395–406.PubMedPubMedCentralCrossRef Lee Y, Mansur RB, Brietzke E, Kapogiannis D, Delgado-Peraza F, Boutilier JJ, et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry. 2021;26(7):3395–406.PubMedPubMedCentralCrossRef
20.
go back to reference Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol. 2019;76(4):420–9.PubMedPubMedCentralCrossRef Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol. 2019;76(4):420–9.PubMedPubMedCentralCrossRef
21.
go back to reference Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular vesicle biomarkers track cognitive changes following intranasal insulin in Alzheimer’s Disease. J Alzheimers Dis. 2019;69(2):489–98.PubMedPubMedCentralCrossRef Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular vesicle biomarkers track cognitive changes following intranasal insulin in Alzheimer’s Disease. J Alzheimers Dis. 2019;69(2):489–98.PubMedPubMedCentralCrossRef
22.
go back to reference Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2.
23.
go back to reference Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48.PubMedCrossRef Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48.PubMedCrossRef
24.
go back to reference Perluigi M, Picca A, Montanari E, Calvani R, Marini F, Matassa R, et al. Aberrant crosstalk between insulin signaling and mTOR in young Down syndrome individuals revealed by neuronal-derived extracellular vesicles. Alzheimers Dement. 2021;18(8):1498–510. Perluigi M, Picca A, Montanari E, Calvani R, Marini F, Matassa R, et al. Aberrant crosstalk between insulin signaling and mTOR in young Down syndrome individuals revealed by neuronal-derived extracellular vesicles. Alzheimers Dement. 2021;18(8):1498–510.
25.
go back to reference Li TR, Yao YX, Jiang XY, Dong QY, Yu XF, Wang T, et al. beta-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer’s disease and predicts cerebral amyloidosis. Alzheimers Res Ther. 2022;14(1):66.PubMedPubMedCentralCrossRef Li TR, Yao YX, Jiang XY, Dong QY, Yu XF, Wang T, et al. beta-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer’s disease and predicts cerebral amyloidosis. Alzheimers Res Ther. 2022;14(1):66.PubMedPubMedCentralCrossRef
26.
go back to reference Norman M, Ter-Ovanesyan D, Trieu W, Lazarovits R, Kowal EJK, Lee JH, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18(6):631–4.PubMedPubMedCentralCrossRef Norman M, Ter-Ovanesyan D, Trieu W, Lazarovits R, Kowal EJK, Lee JH, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18(6):631–4.PubMedPubMedCentralCrossRef
27.
go back to reference Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef
28.
go back to reference Doncheva AI, Romero S, Ramirez-Garrastacho M, Lee S, Kolnes KJ, Tangen DS, et al. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol (Oxf). 2022;236(4):e13862.PubMedCrossRef Doncheva AI, Romero S, Ramirez-Garrastacho M, Lee S, Kolnes KJ, Tangen DS, et al. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol (Oxf). 2022;236(4):e13862.PubMedCrossRef
29.
go back to reference Zhang Y, Kim JS, Wang TZ, Newton RU, Galvao DA, Gardiner RA, et al. Potential role of exercise induced extracellular vesicles in prostate cancer suppression. Front Oncol. 2021;11:746040.PubMedPubMedCentralCrossRef Zhang Y, Kim JS, Wang TZ, Newton RU, Galvao DA, Gardiner RA, et al. Potential role of exercise induced extracellular vesicles in prostate cancer suppression. Front Oncol. 2021;11:746040.PubMedPubMedCentralCrossRef
30.
go back to reference Eren E, Hunt JFV, Shardell M, Chawla S, Tran J, Gu J, et al. Extracellular vesicle biomarkers of Alzheimer’s disease associated with sub-clinical cognitive decline in late middle age. Alzheimers Dement. 2020;16(9):1293–304.PubMedPubMedCentralCrossRef Eren E, Hunt JFV, Shardell M, Chawla S, Tran J, Gu J, et al. Extracellular vesicle biomarkers of Alzheimer’s disease associated with sub-clinical cognitive decline in late middle age. Alzheimers Dement. 2020;16(9):1293–304.PubMedPubMedCentralCrossRef
31.
go back to reference Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53–66.PubMedCrossRef Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53–66.PubMedCrossRef
32.
go back to reference Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci. 2006;24(5):1265–76.PubMedCrossRef Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci. 2006;24(5):1265–76.PubMedCrossRef
33.
go back to reference Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–75.PubMedPubMedCentralCrossRef Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–75.PubMedPubMedCentralCrossRef
34.
go back to reference Goetzl EJ, Abner EL, Jicha GA, Kapogiannis D, Schwartz JB. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J. 2018;32(2):888–93.PubMedCrossRef Goetzl EJ, Abner EL, Jicha GA, Kapogiannis D, Schwartz JB. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J. 2018;32(2):888–93.PubMedCrossRef
35.
go back to reference Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.PubMedPubMedCentralCrossRef Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.PubMedPubMedCentralCrossRef
36.
go back to reference Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE. 2016;11(9):e0163037.PubMedPubMedCentralCrossRef Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE. 2016;11(9):e0163037.PubMedPubMedCentralCrossRef
37.
go back to reference Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. Elife. 2016;5. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. Elife. 2016;5.
38.
go back to reference Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology. 2014;41:121–31.PubMedCrossRef Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology. 2014;41:121–31.PubMedCrossRef
39.
go back to reference Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24(2):332–40.PubMedPubMedCentralCrossRef Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24(2):332–40.PubMedPubMedCentralCrossRef
40.
go back to reference Weaver KR, Mustapic M, Kapogiannis D, Henderson WA. Neuronal-enriched extracellular vesicles in individuals with IBS: A pilot study of COMT and BDNF. Neurogastroenterol Motil. 2022;34(1):e14257.PubMedCrossRef Weaver KR, Mustapic M, Kapogiannis D, Henderson WA. Neuronal-enriched extracellular vesicles in individuals with IBS: A pilot study of COMT and BDNF. Neurogastroenterol Motil. 2022;34(1):e14257.PubMedCrossRef
41.
go back to reference Suire CN, Eitan E, Shaffer NC, Tian Q, Studenski S, Mattson MP, et al. Walking speed decline in older adults is associated with elevated pro-BDNF in plasma extracellular vesicles. Exp Gerontol. 2017;98:209–16.PubMedPubMedCentralCrossRef Suire CN, Eitan E, Shaffer NC, Tian Q, Studenski S, Mattson MP, et al. Walking speed decline in older adults is associated with elevated pro-BDNF in plasma extracellular vesicles. Exp Gerontol. 2017;98:209–16.PubMedPubMedCentralCrossRef
42.
go back to reference Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98(11):6336–41.PubMedPubMedCentralCrossRef Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98(11):6336–41.PubMedPubMedCentralCrossRef
43.
go back to reference Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, et al. Humanin: a novel central regulator of peripheral insulin action. PLoS ONE. 2009;4(7):e6334.PubMedPubMedCentralCrossRef Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, et al. Humanin: a novel central regulator of peripheral insulin action. PLoS ONE. 2009;4(7):e6334.PubMedPubMedCentralCrossRef
44.
go back to reference Yen K, Wan J, Mehta HH, Miller B, Christensen A, Levine ME, et al. Humanin prevents age-related cognitive decline in mice and is associated with improved cognitive age in humans. Sci Rep. 2018;8(1):14212.PubMedPubMedCentralCrossRef Yen K, Wan J, Mehta HH, Miller B, Christensen A, Levine ME, et al. Humanin prevents age-related cognitive decline in mice and is associated with improved cognitive age in humans. Sci Rep. 2018;8(1):14212.PubMedPubMedCentralCrossRef
45.
go back to reference Kim KM, Meng Q, Perez De Acha O, Mustapic M, Cheng A, Eren E, et al. Mitochondrial RNA in Alzheimer’s disease circulating extracellular vesicles. Front Cell Dev Biol. 2020;8:581882.PubMedPubMedCentralCrossRef Kim KM, Meng Q, Perez De Acha O, Mustapic M, Cheng A, Eren E, et al. Mitochondrial RNA in Alzheimer’s disease circulating extracellular vesicles. Front Cell Dev Biol. 2020;8:581882.PubMedPubMedCentralCrossRef
46.
go back to reference Goetzl EJ, Wolkowitz OM, Srihari VH, Reus VI, Goetzl L, Kapogiannis D, et al. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol Psychiatry. 2021;26(12):7355–62.PubMedPubMedCentralCrossRef Goetzl EJ, Wolkowitz OM, Srihari VH, Reus VI, Goetzl L, Kapogiannis D, et al. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol Psychiatry. 2021;26(12):7355–62.PubMedPubMedCentralCrossRef
47.
go back to reference Goetzl EJ, Srihari VH, Mustapic M, Kapogiannis D, Heninger GR. Abnormal levels of mitochondrial Ca(2+) channel proteins in plasma neuron-derived extracellular vesicles of early schizophrenia. FASEB J. 2022;36(8):e22466.PubMedCrossRef Goetzl EJ, Srihari VH, Mustapic M, Kapogiannis D, Heninger GR. Abnormal levels of mitochondrial Ca(2+) channel proteins in plasma neuron-derived extracellular vesicles of early schizophrenia. FASEB J. 2022;36(8):e22466.PubMedCrossRef
48.
go back to reference Woodhead JST, D’Souza RF, Hedges CP, Wan J, Berridge MV, Cameron-Smith D, et al. High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. J Appl Physiol (1985). 2020;128(5):1346–54.PubMedCrossRef Woodhead JST, D’Souza RF, Hedges CP, Wan J, Berridge MV, Cameron-Smith D, et al. High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. J Appl Physiol (1985). 2020;128(5):1346–54.PubMedCrossRef
49.
go back to reference Taillandier D, Combaret L, Pouch MN, Samuels SE, Bechet D, Attaix D. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Proc Nutr Soc. 2004;63(2):357–61.PubMedCrossRef Taillandier D, Combaret L, Pouch MN, Samuels SE, Bechet D, Attaix D. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Proc Nutr Soc. 2004;63(2):357–61.PubMedCrossRef
50.
go back to reference Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci. 2003;17(6):1150–8.PubMedCrossRef Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci. 2003;17(6):1150–8.PubMedCrossRef
51.
go back to reference Morris DL, Johnson S, Bleck CKE, Lee DY, Tjandra N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J Biol Chem. 2020;295(52):18226–38.PubMedCrossRef Morris DL, Johnson S, Bleck CKE, Lee DY, Tjandra N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J Biol Chem. 2020;295(52):18226–38.PubMedCrossRef
52.
go back to reference Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mager I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316.PubMedCrossRef Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mager I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316.PubMedCrossRef
53.
go back to reference Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 2013;18(5):649–59.PubMedPubMedCentralCrossRef Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 2013;18(5):649–59.PubMedPubMedCentralCrossRef
54.
go back to reference Jensen CS, Simonsen AH, Siersma V, Beyer N, Frederiksen KS, Gottrup H, et al. Patients with Alzheimer’s disease who carry the APOE epsilon4 allele benefit more from physical exercise. Alzheimers Dement (N Y). 2019;5:99–106.PubMedCrossRef Jensen CS, Simonsen AH, Siersma V, Beyer N, Frederiksen KS, Gottrup H, et al. Patients with Alzheimer’s disease who carry the APOE epsilon4 allele benefit more from physical exercise. Alzheimers Dement (N Y). 2019;5:99–106.PubMedCrossRef
55.
go back to reference Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21.PubMedCrossRef Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21.PubMedCrossRef
56.
go back to reference Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–64.PubMedCrossRef Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–64.PubMedCrossRef
Metadata
Title
Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease
Authors
Francheska Delgado-Peraza
Carlos Nogueras-Ortiz
Anja Hviid Simonsen
De’Larrian DeAnté Knight
Pamela J. Yao
Edward J. Goetzl
Camilla Steen Jensen
Peter Høgh
Hanne Gottrup
Karsten Vestergaard
Steen Gregers Hasselbalch
Dimitrios Kapogiannis
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01303-9

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue