Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

A metagenomic study of gut viral markers in amyloid-positive Alzheimer’s disease patients

Authors: Mahin Ghorbani, Daniel Ferreira, Silvia Maioli

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Mounting evidence suggests the involvement of viruses in the development and treatment of Alzheimer’s disease (AD). However, there remains a significant research gap in metagenomic studies investigating the gut virome of AD patients, leaving gut viral dysbiosis in AD unexplored. This study aimed to fill this gap by conducting a metagenomics analysis of the gut virome in both amyloid-positive AD patients (Aβ + ADs) and healthy controls (HCs), with the objective of identifying viral signatures linked with AD.

Method

Whole-genome sequence (WGS) data from 65 human participants, including 30 Aβ + ADs and 35 HCs, was obtained from the database NCBI SRA (Bio Project: PRJEB47976). The Metaphlan3 pipeline and linear discriminant analysis effect size (LEfSe) analysis were utilized for the bioinformatics process and the detection of viral signatures, respectively. In addition, the Benjamini–Hochberg method was applied with a significance cutoff of 0.05 to evaluate the false discovery rate for all biomarkers identified by LEfSe. The CombiROC model was employed to determine the discriminatory power of the viral signatures identified by LEfSe.

Results

Compared to HCs, the gut virome profiles of Aβ + ADs showed lower alpha diversity, indicating a lower bacteriophage richness. The Siphoviridae family was decreased in Aβ + ADs. Significant decreases of Lactococcus phages were found in Aβ + ADs, including bIL285, Lactococcus phage bIL286, Lactococcus phage bIL309, and Lactococcus phage BK5 T, Lactococcus phage BM13, Lactococcus phage P335 sensu lato, Lactococcus phage phiLC3, Lactococcus phage r1t, Lactococcus phage Tuc2009, Lactococcus phage ul36, and Lactococcus virus bIL67. The predictive combined model of these viral signatures obtained an area under the curve of 0.958 when discriminating Aβ + ADs from HCs.

Conclusion

This is the first study to identify distinct viral signatures in the intestine that can be used to effectively distinguish individuals with AD from HCs.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Bloom GS. Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505.PubMed Bloom GS. Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505.PubMed
3.
go back to reference Ismail R, Parbo P, Madsen LS, Hansen AK, Hansen KV, Schaldemose JL, et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J Neuroinflammation. 2020;17(1):151.PubMedPubMedCentral Ismail R, Parbo P, Madsen LS, Hansen AK, Hansen KV, Schaldemose JL, et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J Neuroinflammation. 2020;17(1):151.PubMedPubMedCentral
4.
go back to reference Oxford AE, Stewart ES, Rohn TT. Clinical trials in Alzheimer’s disease: a hurdle in the path of remedy. Int J Alzheimer’s Dis. 2020;1(2020):1–13. Oxford AE, Stewart ES, Rohn TT. Clinical trials in Alzheimer’s disease: a hurdle in the path of remedy. Int J Alzheimer’s Dis. 2020;1(2020):1–13.
5.
go back to reference Rosenblum WI. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging. 2014;35(5):969–74.PubMed Rosenblum WI. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging. 2014;35(5):969–74.PubMed
6.
go back to reference van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.PubMed van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.PubMed
7.
go back to reference McDade E, Cummings JL, Dhadda S, Swanson CJ, Reyderman L, Kanekiyo M, et al. Lecanemab in patients with early Alzheimer’s disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alz Res Therapy. 2022;14(1):191. McDade E, Cummings JL, Dhadda S, Swanson CJ, Reyderman L, Kanekiyo M, et al. Lecanemab in patients with early Alzheimer’s disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alz Res Therapy. 2022;14(1):191.
9.
go back to reference Rasmussen J, Langerman H. Alzheimer’s disease – why we need early diagnosis. DNND. 2019;9:123–30. Rasmussen J, Langerman H. Alzheimer’s disease – why we need early diagnosis. DNND. 2019;9:123–30.
10.
go back to reference Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, et al. The potential role of gut microbiota in Alzheimer’s disease: from diagnosis to treatment. Nutrients. 2022;14(3):668.PubMedPubMedCentral Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, et al. The potential role of gut microbiota in Alzheimer’s disease: from diagnosis to treatment. Nutrients. 2022;14(3):668.PubMedPubMedCentral
11.
go back to reference Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol. 2018;55(11):8243–50.PubMed Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol. 2018;55(11):8243–50.PubMed
12.
go back to reference Cerovic M, Forloni G, Balducci C. Neuroinflammation and the gut microbiota: possible alternative therapeutic targets to counteract Alzheimer’s disease? Front Aging Neurosci. 2019;18(11):284. Cerovic M, Forloni G, Balducci C. Neuroinflammation and the gut microbiota: possible alternative therapeutic targets to counteract Alzheimer’s disease? Front Aging Neurosci. 2019;18(11):284.
13.
go back to reference Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegeneration. 2022;17(1):19. Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegeneration. 2022;17(1):19.
14.
go back to reference Sait A, Angeli C, Doig AJ, Day PJR. Viral involvement in Alzheimer’s disease. ACS Chem Neurosci. 2021;12(7):1049–60.PubMed Sait A, Angeli C, Doig AJ, Day PJR. Viral involvement in Alzheimer’s disease. ACS Chem Neurosci. 2021;12(7):1049–60.PubMed
16.
go back to reference Li L, Mao S, Wang J, Ding X, Zen JY. Viral infection and neurological disorders—potential role of extracellular nucleotides in neuroinflammation. ExRNA. 2019;1(1):26. Li L, Mao S, Wang J, Ding X, Zen JY. Viral infection and neurological disorders—potential role of extracellular nucleotides in neuroinflammation. ExRNA. 2019;1(1):26.
17.
go back to reference Neu U, Mainou BA. Virus interactions with bacteria: partners in the infectious dance. Evans MJ, editor. PLoS Pathog. 2020;16(2):e1008234.PubMedPubMedCentral Neu U, Mainou BA. Virus interactions with bacteria: partners in the infectious dance. Evans MJ, editor. PLoS Pathog. 2020;16(2):e1008234.PubMedPubMedCentral
18.
go back to reference Cobián Güemes AG, Youle M, Cantú VA, Felts B, Nulton J, Rohwer F. Viruses as winners in the game of life. Annu Rev Virol. 2016;3(1):197–214.PubMed Cobián Güemes AG, Youle M, Cantú VA, Felts B, Nulton J, Rohwer F. Viruses as winners in the game of life. Annu Rev Virol. 2016;3(1):197–214.PubMed
19.
go back to reference Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514–27.PubMedPubMedCentral Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514–27.PubMedPubMedCentral
20.
go back to reference Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 2019;17(1):84.PubMedPubMedCentral Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 2019;17(1):84.PubMedPubMedCentral
21.
go back to reference Hulo C, Masson P, de Castro E, Auchincloss AH, Foulger R, Poux S, et al. The ins and outs of eukaryotic viruses: knowledge base and ontology of a viral infection. Alvisi G, editor. PLoS ONE. 2017;12(2):e0171746.PubMedPubMedCentral Hulo C, Masson P, de Castro E, Auchincloss AH, Foulger R, Poux S, et al. The ins and outs of eukaryotic viruses: knowledge base and ontology of a viral infection. Alvisi G, editor. PLoS ONE. 2017;12(2):e0171746.PubMedPubMedCentral
22.
go back to reference Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Bio Medica Atenei Parmensis. 2020;91(13-S):e2020024.PubMedPubMedCentral Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Bio Medica Atenei Parmensis. 2020;91(13-S):e2020024.PubMedPubMedCentral
23.
go back to reference Papaianni M, Cuomo P, Fulgione A, Albanese D, Gallo M, Paris D, et al. Bacteriophages promote metabolic changes in bacteria biofilm. Microorganisms. 2020;8(4):480.PubMedPubMedCentral Papaianni M, Cuomo P, Fulgione A, Albanese D, Gallo M, Paris D, et al. Bacteriophages promote metabolic changes in bacteria biofilm. Microorganisms. 2020;8(4):480.PubMedPubMedCentral
24.
go back to reference Maghsoodi A, Chatterjee A, Andricioaei I, Perkins NC. How the phage T4 injection machinery works including energetics, forces, and dynamic pathway. Proc Natl Acad Sci USA. 2019;116(50):25097–105.PubMedPubMedCentral Maghsoodi A, Chatterjee A, Andricioaei I, Perkins NC. How the phage T4 injection machinery works including energetics, forces, and dynamic pathway. Proc Natl Acad Sci USA. 2019;116(50):25097–105.PubMedPubMedCentral
25.
go back to reference Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, et al. Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol. 2011;62(4):1128–32.PubMed Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, et al. Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol. 2011;62(4):1128–32.PubMed
26.
go back to reference Pires DP, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. Goff SP, editor. J Virol. 2015;89(15):7449–56.PubMedPubMedCentral Pires DP, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. Goff SP, editor. J Virol. 2015;89(15):7449–56.PubMedPubMedCentral
27.
go back to reference Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: a persistent predator of Vibrio cholerae. Annu Rev Virol. 2021;8(1):285–304.PubMedPubMedCentral Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: a persistent predator of Vibrio cholerae. Annu Rev Virol. 2021;8(1):285–304.PubMedPubMedCentral
28.
go back to reference Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut. 2022;71(11):2233–52.PubMed Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut. 2022;71(11):2233–52.PubMed
29.
go back to reference Murphy MJ, Fani L, Ikram MK, Ghanbari M, Ikram MA. Herpes simplex virus 1 and the risk of dementia: a population-based study. Sci Rep. 2021;11(1):8691.PubMedPubMedCentral Murphy MJ, Fani L, Ikram MK, Ghanbari M, Ikram MA. Herpes simplex virus 1 and the risk of dementia: a population-based study. Sci Rep. 2021;11(1):8691.PubMedPubMedCentral
30.
go back to reference Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, et al. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe. 2022;30(3):340–356.e8.PubMed Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, et al. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe. 2022;30(3):340–356.e8.PubMed
31.
go back to reference Protto V, Marcocci ME, Miteva MT, Piacentini R, Li Puma DD, Grassi C, et al. Role of HSV-1 in Alzheimer’s disease pathogenesis: a challenge for novel preventive/therapeutic strategies. Curr Opin Pharmacol. 2022;63:102200.PubMed Protto V, Marcocci ME, Miteva MT, Piacentini R, Li Puma DD, Grassi C, et al. Role of HSV-1 in Alzheimer’s disease pathogenesis: a challenge for novel preventive/therapeutic strategies. Curr Opin Pharmacol. 2022;63:102200.PubMed
32.
go back to reference Itzhaki RF. Overwhelming evidence for a major role for herpes simplex virus type 1 (HSV1) in Alzheimer’s disease (AD); underwhelming evidence against. Vaccines. 2021;9(6):679.PubMedPubMedCentral Itzhaki RF. Overwhelming evidence for a major role for herpes simplex virus type 1 (HSV1) in Alzheimer’s disease (AD); underwhelming evidence against. Vaccines. 2021;9(6):679.PubMedPubMedCentral
33.
go back to reference Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med. 2011;13:e30.PubMed Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med. 2011;13:e30.PubMed
34.
go back to reference Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer’s disease: SARS-CoV-2 on the cusp. Front Aging Neurosci. 2023;15(15):1129640.PubMedPubMedCentral Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer’s disease: SARS-CoV-2 on the cusp. Front Aging Neurosci. 2023;15(15):1129640.PubMedPubMedCentral
35.
go back to reference Lee SE, Choi H, Shin N, Kong D, Kim NG, Kim HY, et al. Zika virus infection accelerates Alzheimer’s disease phenotypes in brain organoids. Cell Death Discov. 2022;8(1):153.PubMedPubMedCentral Lee SE, Choi H, Shin N, Kong D, Kim NG, Kim HY, et al. Zika virus infection accelerates Alzheimer’s disease phenotypes in brain organoids. Cell Death Discov. 2022;8(1):153.PubMedPubMedCentral
36.
go back to reference Laske C, Müller S, Preische O, Ruschil V, Munk MHJ, Honold I, et al. Signature of Alzheimer’s disease in intestinal microbiome: results from the AlzBiom study. Front Neurosci. 2022;16:792996.PubMedPubMedCentral Laske C, Müller S, Preische O, Ruschil V, Munk MHJ, Honold I, et al. Signature of Alzheimer’s disease in intestinal microbiome: results from the AlzBiom study. Front Neurosci. 2022;16:792996.PubMedPubMedCentral
37.
38.
go back to reference Ghosh TS, Das M, Jeffery IB, O’Toole PW. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife. 2020;11(9):e50240. Ghosh TS, Das M, Jeffery IB, O’Toole PW. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife. 2020;11(9):e50240.
40.
go back to reference Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10:e65088.PubMedPubMedCentral Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10:e65088.PubMedPubMedCentral
41.
go back to reference Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.PubMedPubMedCentral Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.PubMedPubMedCentral
42.
go back to reference Mazzara S, Rossi RL, Grifantini R, Donizetti S, Abrignani S, Bombaci M. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep. 2017;7(1):45477.PubMedPubMedCentral Mazzara S, Rossi RL, Grifantini R, Donizetti S, Abrignani S, Bombaci M. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep. 2017;7(1):45477.PubMedPubMedCentral
43.
44.
go back to reference Mellott TJ, Huleatt OM, Shade BN, Pender SM, Liu YB, Slack BE, et al. Perinatal choline supplementation reduces amyloidosis and increases choline acetyltransferase expression in the hippocampus of the APPswePS1dE9 Alzheimer’s disease model mice. Ohno M, editor. PLoS ONE. 2017;12(1):e0170450.PubMedPubMedCentral Mellott TJ, Huleatt OM, Shade BN, Pender SM, Liu YB, Slack BE, et al. Perinatal choline supplementation reduces amyloidosis and increases choline acetyltransferase expression in the hippocampus of the APPswePS1dE9 Alzheimer’s disease model mice. Ohno M, editor. PLoS ONE. 2017;12(1):e0170450.PubMedPubMedCentral
45.
go back to reference Fu AL, Li Q, Dong ZH, Huang SJ, Wang YX, Sun MJ. Alternative therapy of Alzheimer’s disease via supplementation with choline acetyltransferase. Neurosci Lett. 2004;368(3):258–62.PubMed Fu AL, Li Q, Dong ZH, Huang SJ, Wang YX, Sun MJ. Alternative therapy of Alzheimer’s disease via supplementation with choline acetyltransferase. Neurosci Lett. 2004;368(3):258–62.PubMed
46.
go back to reference Deveau H, Labrie SJ, Chopin MC, Moineau S. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol. 2006;72(6):4338–46.PubMedPubMedCentral Deveau H, Labrie SJ, Chopin MC, Moineau S. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol. 2006;72(6):4338–46.PubMedPubMedCentral
47.
go back to reference Abedi E, Hashemi SMB. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon. 2020;6(10):e04974.PubMedPubMedCentral Abedi E, Hashemi SMB. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon. 2020;6(10):e04974.PubMedPubMedCentral
48.
go back to reference Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Correction: Lactate metabolism in human health and disease. Sig Transduct Target Ther. 2022;7(1):372. Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Correction: Lactate metabolism in human health and disease. Sig Transduct Target Ther. 2022;7(1):372.
49.
go back to reference Pohanka M. D-Lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int. 2020;18(2020):1–9. Pohanka M. D-Lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int. 2020;18(2020):1–9.
50.
go back to reference Levitt MD, Levitt DG. Quantitative evaluation of D-lactate pathophysiology: new insights into the mechanisms involved and the many areas in need of further investigation. CEG. 2020;13:321–37. Levitt MD, Levitt DG. Quantitative evaluation of D-lactate pathophysiology: new insights into the mechanisms involved and the many areas in need of further investigation. CEG. 2020;13:321–37.
51.
go back to reference Brandt RB, Waters MG, Rispler MJ, Kline ES. D- and L-lactate catabolism to CO2 in rat tissues. Exp Biol Med. 1984;175(3):328–35. Brandt RB, Waters MG, Rispler MJ, Kline ES. D- and L-lactate catabolism to CO2 in rat tissues. Exp Biol Med. 1984;175(3):328–35.
52.
go back to reference Tekkök SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res. 2005;81(5):644–52.PubMed Tekkök SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res. 2005;81(5):644–52.PubMed
53.
go back to reference Chen X, Zhang Y, Wang H, Liu L, Li W, Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. Discov Ment Health. 2022;2(1):8.PubMedPubMedCentral Chen X, Zhang Y, Wang H, Liu L, Li W, Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. Discov Ment Health. 2022;2(1):8.PubMedPubMedCentral
54.
go back to reference Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–23.PubMedPubMedCentral Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–23.PubMedPubMedCentral
55.
go back to reference Veloz Castillo MF, Magistretti PJ, Calì C. l-Lactate: food for thoughts, memory and behavior. Metabolites. 2021;11(8):548.PubMedPubMedCentral Veloz Castillo MF, Magistretti PJ, Calì C. l-Lactate: food for thoughts, memory and behavior. Metabolites. 2021;11(8):548.PubMedPubMedCentral
56.
go back to reference Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports. 2017;9(6):1885–97.PubMedPubMedCentral Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports. 2017;9(6):1885–97.PubMedPubMedCentral
57.
go back to reference Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol. 2022;11(12):825816. Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol. 2022;11(12):825816.
58.
go back to reference Yamagata K. Lactate supply from astrocytes to neurons and its role in ischemic stroke-induced neurodegeneration. Neuroscience. 2022;481:219–31.PubMed Yamagata K. Lactate supply from astrocytes to neurons and its role in ischemic stroke-induced neurodegeneration. Neuroscience. 2022;481:219–31.PubMed
59.
go back to reference Hung CC, Crowe-White KM, McDonough IM. A seed and soil model of gut dysbiosis in Alzheimer’s disease. Aging (Albany NY). 2023;15(12):5235–7.PubMed Hung CC, Crowe-White KM, McDonough IM. A seed and soil model of gut dysbiosis in Alzheimer’s disease. Aging (Albany NY). 2023;15(12):5235–7.PubMed
Metadata
Title
A metagenomic study of gut viral markers in amyloid-positive Alzheimer’s disease patients
Authors
Mahin Ghorbani
Daniel Ferreira
Silvia Maioli
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01285-8

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue