Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Magnetic Resonance Imaging | Research

Higher performance for women than men in MRI-based Alzheimer’s disease detection

Authors: Malte Klingenberg, Didem Stark, Fabian Eitel, Céline Budding, Mohamad Habes, Kerstin Ritter, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Introduction

Although machine learning classifiers have been frequently used to detect Alzheimer’s disease (AD) based on structural brain MRI data, potential bias with respect to sex and age has not yet been addressed. Here, we examine a state-of-the-art AD classifier for potential sex and age bias even in the case of balanced training data.

Methods

Based on an age- and sex-balanced cohort of 432 subjects (306 healthy controls, 126 subjects with AD) extracted from the ADNI data base, we trained a convolutional neural network to detect AD in MRI brain scans and performed ten different random training-validation-test splits to increase robustness of the results. Classifier decisions for single subjects were explained using layer-wise relevance propagation.

Results

The classifier performed significantly better for women (balanced accuracy \(87.58\pm 1.14\%\)) than for men (\(79.05\pm 1.27\%\)). No significant differences were found in clinical AD scores, ruling out a disparity in disease severity as a cause for the performance difference. Analysis of the explanations revealed a larger variance in regional brain areas for male subjects compared to female subjects.

Discussion

The identified sex differences cannot be attributed to an imbalanced training dataset and therefore point to the importance of examining and reporting classifier performance across population subgroups to increase transparency and algorithmic fairness. Collecting more data especially among underrepresented subgroups and balancing the dataset are important but do not always guarantee a fair outcome.
Literature
1.
go back to reference Payan A, Montana G. Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint. 2015. ArXiv:1502.02506. Payan A, Montana G. Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint. 2015. ArXiv:​1502.​02506.
2.
go back to reference Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal. 2020;63:101694. Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal. 2020;63:101694.
3.
go back to reference Klöppel S, Stonnington CM, Barnes J, Chen F, Chu C, Good CD, et al. Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method. Brain. 2008;131(11):2969–74.PubMedPubMedCentralCrossRef Klöppel S, Stonnington CM, Barnes J, Chen F, Chu C, Good CD, et al. Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method. Brain. 2008;131(11):2969–74.PubMedPubMedCentralCrossRef
4.
go back to reference Böhle M, Eitel F, Weygandt M, Ritter K. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front Aging Neurosci. 2019;11:194.PubMedPubMedCentralCrossRef Böhle M, Eitel F, Weygandt M, Ritter K. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front Aging Neurosci. 2019;11:194.PubMedPubMedCentralCrossRef
6.
go back to reference Howard LM, Ehrlich AM, Gamlen F, Oram S. Gender-neutral mental health research is sex and gender biased. Lancet Psychiatr. 2017;4(1):9–11.CrossRef Howard LM, Ehrlich AM, Gamlen F, Oram S. Gender-neutral mental health research is sex and gender biased. Lancet Psychiatr. 2017;4(1):9–11.CrossRef
7.
go back to reference Mansukhani NA, Yoon DY, Teter KA, Stubbs VC, Helenowski IB, Woodruff TK, et al. Determining if sex bias exists in human surgical clinical research. JAMA Surg. 2016;151(11):1022–30.PubMedPubMedCentralCrossRef Mansukhani NA, Yoon DY, Teter KA, Stubbs VC, Helenowski IB, Woodruff TK, et al. Determining if sex bias exists in human surgical clinical research. JAMA Surg. 2016;151(11):1022–30.PubMedPubMedCentralCrossRef
8.
go back to reference Mosca L, Banka CL, Benjamin EJ, Berra K, Bushnell C, Dolor RJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation. 2007;115(11):1481–501.PubMedCrossRef Mosca L, Banka CL, Benjamin EJ, Berra K, Bushnell C, Dolor RJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation. 2007;115(11):1481–501.PubMedCrossRef
9.
go back to reference Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E. Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl Acad Sci. 2020;117(23):12592–4.PubMedPubMedCentralCrossRef Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E. Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl Acad Sci. 2020;117(23):12592–4.PubMedPubMedCentralCrossRef
10.
go back to reference Seyyed-Kalantari L, Zhang H, McDermott M, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med. 2021;27(12):2176–82.PubMedPubMedCentralCrossRef Seyyed-Kalantari L, Zhang H, McDermott M, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med. 2021;27(12):2176–82.PubMedPubMedCentralCrossRef
11.
go back to reference Yu Z, Chakraborty J, Menzies T. Fair balance: mitigating machine learning bias against multiple sensitive attributes with data balancing. arXiv preprint. 2021. ArXiv:2107.08310. Yu Z, Chakraborty J, Menzies T. Fair balance: mitigating machine learning bias against multiple sensitive attributes with data balancing. arXiv preprint. 2021. ArXiv:​2107.​08310.
12.
go back to reference Seyyed-Kalantari L, Liu G, McDermott M, Chen IY, Ghassemi M. CheXclusion: Fairness gaps in deep chest X-ray classifiers. In: Pac Symp Biocomput 2021;26:232-243; 2020. p. 232–243. Seyyed-Kalantari L, Liu G, McDermott M, Chen IY, Ghassemi M. CheXclusion: Fairness gaps in deep chest X-ray classifiers. In: Pac Symp Biocomput 2021;26:232-243; 2020. p. 232–243.
13.
go back to reference Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatr. 1998;55(9):809–15.PubMedCrossRef Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatr. 1998;55(9):809–15.PubMedCrossRef
14.
go back to reference Hua X, Hibar DP, Lee S, Toga AW, Jack CR Jr, Weiner MW, et al. Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans. Neurobiol Aging. 2010;31(8):1463–80.PubMedPubMedCentralCrossRef Hua X, Hibar DP, Lee S, Toga AW, Jack CR Jr, Weiner MW, et al. Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans. Neurobiol Aging. 2010;31(8):1463–80.PubMedPubMedCentralCrossRef
15.
go back to reference Koran MEI, Wagener M, Hohman TJ, et al. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017;11(1):205–13.PubMedPubMedCentralCrossRef Koran MEI, Wagener M, Hohman TJ, et al. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017;11(1):205–13.PubMedPubMedCentralCrossRef
16.
go back to reference Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62(6):685–91.PubMedCrossRef Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62(6):685–91.PubMedCrossRef
17.
go back to reference Cavedo E, Chiesa PA, Houot M, Ferretti MT, Grothe MJ, Teipel SJ, et al. Sex differences in functional and molecular neuroimaging biomarkers of Alzheimer’s disease in cognitively normal older adults with subjective memory complaints. Alzheimers Dement. 2018;14(9):1204–15.PubMedCrossRef Cavedo E, Chiesa PA, Houot M, Ferretti MT, Grothe MJ, Teipel SJ, et al. Sex differences in functional and molecular neuroimaging biomarkers of Alzheimer’s disease in cognitively normal older adults with subjective memory complaints. Alzheimers Dement. 2018;14(9):1204–15.PubMedCrossRef
18.
go back to reference Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion. 2020;58:82–115.CrossRef Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion. 2020;58:82–115.CrossRef
19.
go back to reference Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR. Explainable AI: interpreting, explaining and visualizing deep learning. vol. 11700. Springer Nature; 2019. Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR. Explainable AI: interpreting, explaining and visualizing deep learning. vol. 11700. Springer Nature; 2019.
20.
go back to reference Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, et al. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage Clin. 2019;24:102003.PubMedPubMedCentralCrossRef Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, et al. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage Clin. 2019;24:102003.PubMedPubMedCentralCrossRef
21.
go back to reference Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE. 2015;10(7):E0130140.PubMedPubMedCentralCrossRef Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE. 2015;10(7):E0130140.PubMedPubMedCentralCrossRef
22.
go back to reference Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, et al. Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies. NeuroImage. 2023;269:119929.PubMedCrossRef Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, et al. Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies. NeuroImage. 2023;269:119929.PubMedCrossRef
23.
go back to reference Klingenberg M, Stark D, Eitel F, Ritter K, et al. MRI Image Registration Considerably Improves CNN-Based Disease Classification. In: Abdulkadir A, et al., editors. International Workshop on Machine Learning in Clinical Neuroimaging, vol. 13001. Cham: Springer; 2021. p. 44–52.CrossRef Klingenberg M, Stark D, Eitel F, Ritter K, et al. MRI Image Registration Considerably Improves CNN-Based Disease Classification. In: Abdulkadir A, et al., editors. International Workshop on Machine Learning in Clinical Neuroimaging, vol. 13001. Cham: Springer; 2021. p. 44–52.CrossRef
24.
go back to reference Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41.PubMedCrossRef Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41.PubMedCrossRef
25.
go back to reference Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46(3):786–802.PubMedCrossRef Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46(3):786–802.PubMedCrossRef
26.
28.
go back to reference Kingma DP, Ba J. Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations. San Diego: ICLR; 2015. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations. San Diego: ICLR; 2015.
29.
go back to reference Abdollahi B, Tomita N, Hassanpour S. Data augmentation in training deep learning models for medical image analysis. In: Nanni L, Brahnam S, Brattin R, Ghidoni S, Jain L, editors. Deep learners and deep learner descriptors for medical applications, vol. 186. Cham: Springer; 2020. p. 167–80. Abdollahi B, Tomita N, Hassanpour S. Data augmentation in training deep learning models for medical image analysis. In: Nanni L, Brahnam S, Brattin R, Ghidoni S, Jain L, editors. Deep learners and deep learner descriptors for medical applications, vol. 186. Cham: Springer; 2020. p. 167–80.
30.
go back to reference Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.PubMedCrossRef Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.PubMedCrossRef
31.
go back to reference Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology. 1993;43(11):2412–4.PubMedCrossRef Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology. 1993;43(11):2412–4.PubMedCrossRef
32.
go back to reference Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMedCrossRef Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMedCrossRef
33.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state’’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatric Res. 1975;12(3):189–98.CrossRef Folstein MF, Folstein SE, McHugh PR. “Mini-mental state’’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatric Res. 1975;12(3):189–98.CrossRef
34.
go back to reference Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL, Rossor MN, et al. Volumetric MRI and cognitive measures in Alzheimer disease. J Neurol. 2008;255(4):567–74.PubMedCrossRef Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL, Rossor MN, et al. Volumetric MRI and cognitive measures in Alzheimer disease. J Neurol. 2008;255(4):567–74.PubMedCrossRef
35.
go back to reference Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR. Layer-wise relevance propagation: an overview. In: Samek W, Montavon G, Vedaldi A, Hansen L, Müller KR, editors. Explainable AI: interpreting, explaining and visualizing deep learning. vol. 11700. Cham: Springer; 2019. p. 193–209. Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR. Layer-wise relevance propagation: an overview. In: Samek W, Montavon G, Vedaldi A, Hansen L, Müller KR, editors. Explainable AI: interpreting, explaining and visualizing deep learning. vol. 11700. Cham: Springer; 2019. p. 193–209.
36.
go back to reference Binder A, Montavon G, Lapuschkin S, Müller KR, Samek W. Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa A, Masulli P, Pons Rivero A, editors. International Conference on Artificial Neural Networks, vol. 9887. Cham: Springer; 2016. p. 63–71. Binder A, Montavon G, Lapuschkin S, Müller KR, Samek W. Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa A, Masulli P, Pons Rivero A, editors. International Conference on Artificial Neural Networks, vol. 9887. Cham: Springer; 2016. p. 63–71.
37.
go back to reference Bakker R, Tiesinga P, Kötter R. The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics. 2015;13(3):353–66.PubMedPubMedCentralCrossRef Bakker R, Tiesinga P, Kötter R. The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics. 2015;13(3):353–66.PubMedPubMedCentralCrossRef
38.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991;82(4):239–59.PubMedCrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991;82(4):239–59.PubMedCrossRef
39.
go back to reference Gamberger D, Ženko B, Mitelpunkt A, Shachar N, Lavrač N. Clusters of male and female Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Brain Inform. 2016;3(3):169–79.PubMedPubMedCentralCrossRef Gamberger D, Ženko B, Mitelpunkt A, Shachar N, Lavrač N. Clusters of male and female Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Brain Inform. 2016;3(3):169–79.PubMedPubMedCentralCrossRef
40.
go back to reference Skup M, Zhu H, Wang Y, Giovanello KS, Lin Ja, Shen D, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage. 2011;56(3):890–906. Skup M, Zhu H, Wang Y, Giovanello KS, Lin Ja, Shen D, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage. 2011;56(3):890–906.
41.
go back to reference Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ, et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain. 2016;139(4):1164–79.PubMedPubMedCentralCrossRef Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ, et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain. 2016;139(4):1164–79.PubMedPubMedCentralCrossRef
42.
go back to reference Gannon O, Robison L, Custozzo A, Zuloaga K. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int. 2019;127:38–55.PubMedCrossRef Gannon O, Robison L, Custozzo A, Zuloaga K. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int. 2019;127:38–55.PubMedCrossRef
43.
go back to reference Alsallakh B, Kokhlikyan N, Miglani V, Yuan J, Reblitz-Richardson O. Mind the Pad–CNNs can Develop Blind Spots. 2020. arXiv preprint arXiv:2010.02178. Alsallakh B, Kokhlikyan N, Miglani V, Yuan J, Reblitz-Richardson O. Mind the Pad–CNNs can Develop Blind Spots. 2020. arXiv preprint arXiv:​2010.​02178.
44.
go back to reference Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain. 2008;131(9):2443–54.PubMedPubMedCentralCrossRef Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain. 2008;131(9):2443–54.PubMedPubMedCentralCrossRef
45.
go back to reference Bertoux M, Lagarde J, Corlier F, Hamelin L, Mangin JF, Colliot O, et al. Sulcal morphology in Alzheimer’s disease: an effective marker of diagnosis and cognition. Neurobiol Aging. 2019;84:41–9.PubMedCrossRef Bertoux M, Lagarde J, Corlier F, Hamelin L, Mangin JF, Colliot O, et al. Sulcal morphology in Alzheimer’s disease: an effective marker of diagnosis and cognition. Neurobiol Aging. 2019;84:41–9.PubMedCrossRef
46.
go back to reference Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, et al. Identification of early-stage Alzheimer’s disease using Sulcal morphology and other common neuroimaging indices. PLoS ONE. 2017;12(1):E0170875.PubMedPubMedCentralCrossRef Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, et al. Identification of early-stage Alzheimer’s disease using Sulcal morphology and other common neuroimaging indices. PLoS ONE. 2017;12(1):E0170875.PubMedPubMedCentralCrossRef
47.
go back to reference Marnane M, Al-Jawadi OO, Mortazavi S, Pogorzelec KJ, Wang BW, Feldman HH, et al. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology. 2016;86(6):535–43.PubMedPubMedCentralCrossRef Marnane M, Al-Jawadi OO, Mortazavi S, Pogorzelec KJ, Wang BW, Feldman HH, et al. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology. 2016;86(6):535–43.PubMedPubMedCentralCrossRef
48.
go back to reference van Straaten EC, Harvey D, Scheltens P, Barkhof F, Petersen RC, Thal LJ, et al. Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. J Neurol. 2008;255:1302–8.PubMedPubMedCentralCrossRef van Straaten EC, Harvey D, Scheltens P, Barkhof F, Petersen RC, Thal LJ, et al. Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. J Neurol. 2008;255:1302–8.PubMedPubMedCentralCrossRef
49.
go back to reference Ji X, Wang H, Zhu M, He Y, Zhang H, Chen X, et al. Brainstem atrophy in the early stage of Alzheimer’s disease: a voxel-based morphometry study. Brain Imaging Behav. 2021;15:49–59.PubMedCrossRef Ji X, Wang H, Zhu M, He Y, Zhang H, Chen X, et al. Brainstem atrophy in the early stage of Alzheimer’s disease: a voxel-based morphometry study. Brain Imaging Behav. 2021;15:49–59.PubMedCrossRef
50.
go back to reference Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof P. Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol. 2009;35(6):532–54.PubMedPubMedCentralCrossRef Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof P. Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol. 2009;35(6):532–54.PubMedPubMedCentralCrossRef
51.
go back to reference Lotze M, Domin M, Gerlach FH, Gaser C, Lueders E, Schmidt CO, et al. Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Sci Rep. 2019;9(1671). Lotze M, Domin M, Gerlach FH, Gaser C, Lueders E, Schmidt CO, et al. Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Sci Rep. 2019;9(1671).
52.
go back to reference Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28(8):2959–75.PubMedPubMedCentralCrossRef Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28(8):2959–75.PubMedPubMedCentralCrossRef
53.
go back to reference Eliot L, Ahmed A, Khan H, Patel J. Dump the “dimorphism’’: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev. 2021;125:667–97.PubMedCrossRef Eliot L, Ahmed A, Khan H, Patel J. Dump the “dimorphism’’: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev. 2021;125:667–97.PubMedCrossRef
54.
go back to reference Jäncke L, Mérillat S, Liem F, Hänggi J. Brain size, sex, and the aging brain. Human Brain Mapp. 2015;36(1):150–69.CrossRef Jäncke L, Mérillat S, Liem F, Hänggi J. Brain size, sex, and the aging brain. Human Brain Mapp. 2015;36(1):150–69.CrossRef
55.
go back to reference Joel D, Persico A, Salhov M, Berman Z, Oligschläger S, Meilijson I, et al. Analysis of human brain structure reveals that the brain “types’’ typical of males are also typical of females, and vice versa. Front Hum Neurosci. 2018;12:399.PubMedPubMedCentralCrossRef Joel D, Persico A, Salhov M, Berman Z, Oligschläger S, Meilijson I, et al. Analysis of human brain structure reveals that the brain “types’’ typical of males are also typical of females, and vice versa. Front Hum Neurosci. 2018;12:399.PubMedPubMedCentralCrossRef
56.
go back to reference Toledo JB, Liu H, Grothe MJ, Rashid T, Launer L, Shaw LM, et al. Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer’s disease continuum. Alzheimers Dement Transl Res Clin Interv. 2022;8(1):e12305. Toledo JB, Liu H, Grothe MJ, Rashid T, Launer L, Shaw LM, et al. Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer’s disease continuum. Alzheimers Dement Transl Res Clin Interv. 2022;8(1):e12305.
57.
go back to reference Fonov V, Coupe P, Eskildsen S, Collins L. Atrophy specific MRI brain template for Alzheimer’s disease and mild cognitive impairment. In: Alzheimer’s Association International Conference. France. Vol. 7. 2011. p. S58. hal-00645521. Fonov V, Coupe P, Eskildsen S, Collins L. Atrophy specific MRI brain template for Alzheimer’s disease and mild cognitive impairment. In: Alzheimer’s Association International Conference. France. Vol. 7. 2011. p. S58. hal-00645521.
58.
go back to reference Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO. Age-specific CT and MRI templates for spatial normalization. Neuroimage. 2012;61(4):957–65.PubMedCrossRef Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO. Age-specific CT and MRI templates for spatial normalization. Neuroimage. 2012;61(4):957–65.PubMedCrossRef
59.
go back to reference Bron EE, Klein S, Papma JM, Jiskoot LC, Venkatraghavan V, Linders J, et al. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease. NeuroImage Clin. 2021;31:102712.PubMedPubMedCentralCrossRef Bron EE, Klein S, Papma JM, Jiskoot LC, Venkatraghavan V, Linders J, et al. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease. NeuroImage Clin. 2021;31:102712.PubMedPubMedCentralCrossRef
Metadata
Title
Higher performance for women than men in MRI-based Alzheimer’s disease detection
Authors
Malte Klingenberg
Didem Stark
Fabian Eitel
Céline Budding
Mohamad Habes
Kerstin Ritter
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01225-6

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue