Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2023

Open Access 01-12-2023 | Insulins | Review

Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus

Authors: Yisen Hou, Xinzhe Zhai, Xiaotao Wang, Yi Wu, Heyue Wang, Yaxin Qin, Jianli Han, Yong Meng

Published in: Diabetology & Metabolic Syndrome | Issue 1/2023

Login to get access

Abstract

Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Literature
1.
3.
4.
go back to reference Wang W, Shi Z, Zhang R, et al. Liver proteomics analysis reveals abnormal metabolism of bile acid and arachidonic acid in Chinese hamsters with type 2 diabetes mellitus. J Proteomics. 2021;239: 104186.PubMedCrossRef Wang W, Shi Z, Zhang R, et al. Liver proteomics analysis reveals abnormal metabolism of bile acid and arachidonic acid in Chinese hamsters with type 2 diabetes mellitus. J Proteomics. 2021;239: 104186.PubMedCrossRef
5.
6.
go back to reference Catoi AF, Parvu A, Muresan A, et al. Metabolic mechanisms in obesity and type 2 diabetes: insights from bariatric/metabolic surgery. Obes Facts. 2015;8(6):350–63.PubMedPubMedCentralCrossRef Catoi AF, Parvu A, Muresan A, et al. Metabolic mechanisms in obesity and type 2 diabetes: insights from bariatric/metabolic surgery. Obes Facts. 2015;8(6):350–63.PubMedPubMedCentralCrossRef
7.
go back to reference Chen X, Zhang J, Zhou Z. Targeting Islets: metabolic surgery is more than a bariatric surgery. Obes Surg. 2019;29(9):3001–9.PubMedCrossRef Chen X, Zhang J, Zhou Z. Targeting Islets: metabolic surgery is more than a bariatric surgery. Obes Surg. 2019;29(9):3001–9.PubMedCrossRef
8.
go back to reference Huang HH, Lee WJ, Chen SC, et al. Bile acid and fibroblast growth factor 19 regulation in obese diabetics, and non-alcoholic fatty liver disease after sleeve gastrectomy. J Clin Med. 2019;8(6):815.PubMedPubMedCentralCrossRef Huang HH, Lee WJ, Chen SC, et al. Bile acid and fibroblast growth factor 19 regulation in obese diabetics, and non-alcoholic fatty liver disease after sleeve gastrectomy. J Clin Med. 2019;8(6):815.PubMedPubMedCentralCrossRef
9.
go back to reference Wu T, Yang M, Xu H, et al. Serum bile acid profiles improve clinical prediction of nonalcoholic fatty liver in T2DM patients. J Proteome Res. 2021;20(8):3814–25.PubMedCrossRef Wu T, Yang M, Xu H, et al. Serum bile acid profiles improve clinical prediction of nonalcoholic fatty liver in T2DM patients. J Proteome Res. 2021;20(8):3814–25.PubMedCrossRef
13.
go back to reference Kaska L, Sledzinski T, Chomiczewska A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698–719.PubMedPubMedCentralCrossRef Kaska L, Sledzinski T, Chomiczewska A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698–719.PubMedPubMedCentralCrossRef
14.
go back to reference di Ciaula A, Garruti G, Lunardi R, et al. Bile acid physiology. Ann Hepatol. 2017;2017(16):S4–14.CrossRef di Ciaula A, Garruti G, Lunardi R, et al. Bile acid physiology. Ann Hepatol. 2017;2017(16):S4–14.CrossRef
15.
go back to reference Browning MG, Pessoa BM, Khoraki J, et al. Changes in Bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Curr Obes Rep. 2019;8(2):175–84.PubMedCrossRef Browning MG, Pessoa BM, Khoraki J, et al. Changes in Bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Curr Obes Rep. 2019;8(2):175–84.PubMedCrossRef
17.
go back to reference Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10(8):488–98.PubMedCrossRef Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10(8):488–98.PubMedCrossRef
18.
19.
20.
go back to reference Tiessen RG, Kennedy CA, Keller BT, et al. Safety, tolerability and pharmacodynamics of apical sodium-dependent bile acid transporter inhibition with volixibat in healthy adults and patients with type 2 diabetes mellitus: a randomised placebo-controlled trial. BMC Gastroenterol. 2018;18(1):3.PubMedPubMedCentralCrossRef Tiessen RG, Kennedy CA, Keller BT, et al. Safety, tolerability and pharmacodynamics of apical sodium-dependent bile acid transporter inhibition with volixibat in healthy adults and patients with type 2 diabetes mellitus: a randomised placebo-controlled trial. BMC Gastroenterol. 2018;18(1):3.PubMedPubMedCentralCrossRef
21.
go back to reference Ridlon JM. Bariatric surgery stirs symbionts to counteract diabesity by CA(7)Sting a liver-generated bile acid into the mix. Cell Host Microbe. 2021;29(3):320–2.PubMedCrossRef Ridlon JM. Bariatric surgery stirs symbionts to counteract diabesity by CA(7)Sting a liver-generated bile acid into the mix. Cell Host Microbe. 2021;29(3):320–2.PubMedCrossRef
22.
go back to reference Ocana-Wilhelmi L, Martin-Nunez GM, Ruiz-Limon P, et al. Gut microbiota metabolism of bile acids could contribute to the bariatric surgery improvements in extreme obesity. Metabolites. 2021;11(11):733.PubMedPubMedCentralCrossRef Ocana-Wilhelmi L, Martin-Nunez GM, Ruiz-Limon P, et al. Gut microbiota metabolism of bile acids could contribute to the bariatric surgery improvements in extreme obesity. Metabolites. 2021;11(11):733.PubMedPubMedCentralCrossRef
24.
go back to reference Kemis JH, Linke V, Barrett KL, et al. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet. 2019;15(8): e1008073.PubMedPubMedCentralCrossRef Kemis JH, Linke V, Barrett KL, et al. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet. 2019;15(8): e1008073.PubMedPubMedCentralCrossRef
25.
go back to reference Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158–71.PubMedCrossRef Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158–71.PubMedCrossRef
26.
go back to reference Zhang F, Yuan W, Wei Y, et al. The alterations of bile acids in rats with high-fat diet/streptozotocin-induced type 2 diabetes and their negative effects on glucose metabolism. Life Sci. 2019;229:80–92.PubMedCrossRef Zhang F, Yuan W, Wei Y, et al. The alterations of bile acids in rats with high-fat diet/streptozotocin-induced type 2 diabetes and their negative effects on glucose metabolism. Life Sci. 2019;229:80–92.PubMedCrossRef
27.
go back to reference Fouladi F, Mitchell JE, Wonderlich JA, et al. The contributing role of bile acids to metabolic improvements after obesity and metabolic surgery. Obes Surg. 2016;26(10):2492–502.PubMedCrossRef Fouladi F, Mitchell JE, Wonderlich JA, et al. The contributing role of bile acids to metabolic improvements after obesity and metabolic surgery. Obes Surg. 2016;26(10):2492–502.PubMedCrossRef
28.
go back to reference Wang M, Wu Q, Xie H, et al. Effects of sleeve gastrectomy on serum 12alpha-hydroxylated bile acids in a diabetic rat model. Obes Surg. 2017;27(11):2912–8.PubMedCrossRef Wang M, Wu Q, Xie H, et al. Effects of sleeve gastrectomy on serum 12alpha-hydroxylated bile acids in a diabetic rat model. Obes Surg. 2017;27(11):2912–8.PubMedCrossRef
29.
go back to reference Maghsoodi N, Shaw N, Cross GF, et al. Bile acid metabolism is altered in those with insulin resistance after gestational diabetes mellitus. Clin Biochem. 2019;64:12–7.PubMedCrossRef Maghsoodi N, Shaw N, Cross GF, et al. Bile acid metabolism is altered in those with insulin resistance after gestational diabetes mellitus. Clin Biochem. 2019;64:12–7.PubMedCrossRef
30.
go back to reference Wang S, Deng Y, Xie X, et al. Plasma bile acid changes in type 2 diabetes correlated with insulin secretion in two-step hyperglycemic clamp. J Diabetes. 2018;10(11):874–85.PubMedCrossRef Wang S, Deng Y, Xie X, et al. Plasma bile acid changes in type 2 diabetes correlated with insulin secretion in two-step hyperglycemic clamp. J Diabetes. 2018;10(11):874–85.PubMedCrossRef
31.
go back to reference Zangerolamo L, Vettorazzi JF, Solon C, et al. The bile acid TUDCA improves glucose metabolism in streptozotocin-induced Alzheimer’s disease mice model. Mol Cell Endocrinol. 2021;521: 111116.PubMedCrossRef Zangerolamo L, Vettorazzi JF, Solon C, et al. The bile acid TUDCA improves glucose metabolism in streptozotocin-induced Alzheimer’s disease mice model. Mol Cell Endocrinol. 2021;521: 111116.PubMedCrossRef
32.
go back to reference Mazidi M, de Caravatto PP, Speakman JR, et al. Mechanisms of action of surgical interventions on weight-related diseases: the potential role of bile acids. Obes Surg. 2017;27(3):826–36.PubMedCrossRef Mazidi M, de Caravatto PP, Speakman JR, et al. Mechanisms of action of surgical interventions on weight-related diseases: the potential role of bile acids. Obes Surg. 2017;27(3):826–36.PubMedCrossRef
33.
go back to reference Staels B. A review of bile acid sequestrants: potential mechanism(s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121(3 Suppl 1):25–30.PubMedCrossRef Staels B. A review of bile acid sequestrants: potential mechanism(s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121(3 Suppl 1):25–30.PubMedCrossRef
34.
go back to reference Lee SG, Lee YH, Choi E, et al. Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status. Clin Chem Lab Med. 2019;57(8):1218–28.PubMedCrossRef Lee SG, Lee YH, Choi E, et al. Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status. Clin Chem Lab Med. 2019;57(8):1218–28.PubMedCrossRef
36.
go back to reference Lee G, Park YS, Cho C, et al. Short-term changes in the serum metabolome after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Metabolomics. 2021;17(8):71.PubMedCrossRef Lee G, Park YS, Cho C, et al. Short-term changes in the serum metabolome after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Metabolomics. 2021;17(8):71.PubMedCrossRef
37.
go back to reference Li M, Hu X, Xu Y, et al. A Possible Mechanism of Metformin in Improving Insulin Resistance in Diabetic Rat Models. Int J Endocrinol. 2019;2019:3248527.PubMedPubMedCentralCrossRef Li M, Hu X, Xu Y, et al. A Possible Mechanism of Metformin in Improving Insulin Resistance in Diabetic Rat Models. Int J Endocrinol. 2019;2019:3248527.PubMedPubMedCentralCrossRef
39.
go back to reference Metry M, Krug SA, Karra VK, et al. Differential effects of metformin-mediated BSEP repression on pravastatin and bile acid pharmacokinetics in humans: a randomized controlled trial. Clin Transl Sci. 2022;15(10):2468–78.PubMedPubMedCentralCrossRef Metry M, Krug SA, Karra VK, et al. Differential effects of metformin-mediated BSEP repression on pravastatin and bile acid pharmacokinetics in humans: a randomized controlled trial. Clin Transl Sci. 2022;15(10):2468–78.PubMedPubMedCentralCrossRef
40.
go back to reference Faradonbeh FA, Lastuvkova H, et al. Metformin impairs bile acid homeostasis in ethinylestradiol-induced cholestasis in mice. Chem Biol Interact. 2021;345:109525.PubMedCrossRef Faradonbeh FA, Lastuvkova H, et al. Metformin impairs bile acid homeostasis in ethinylestradiol-induced cholestasis in mice. Chem Biol Interact. 2021;345:109525.PubMedCrossRef
41.
go back to reference Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785.PubMedPubMedCentralCrossRef Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785.PubMedPubMedCentralCrossRef
42.
go back to reference Zhao L, Xuan Z, Song W, et al. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med. 2020;24(21):12848–61.PubMedPubMedCentralCrossRef Zhao L, Xuan Z, Song W, et al. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med. 2020;24(21):12848–61.PubMedPubMedCentralCrossRef
44.
go back to reference Silva JA, et al. Effects of tauroursodeoxycholic acid on glucose homeostasis: potential binding of this bile acid with the insulin receptor. Life Sci. 2021;285:120020.PubMedCrossRef Silva JA, et al. Effects of tauroursodeoxycholic acid on glucose homeostasis: potential binding of this bile acid with the insulin receptor. Life Sci. 2021;285:120020.PubMedCrossRef
45.
go back to reference Vettorazzi JF, Ribeiro RA, Borck PC, et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism. 2016;65(3):54–63.PubMedCrossRef Vettorazzi JF, Ribeiro RA, Borck PC, et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism. 2016;65(3):54–63.PubMedCrossRef
46.
go back to reference Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33(4):791–803.PubMedCrossRef Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33(4):791–803.PubMedCrossRef
47.
go back to reference Chen B, Bai Y, Tong F, et al. Glycoursodeoxycholic acid regulates bile acids level and alters gut microbiota and glycolipid metabolism to attenuate diabetes. Gut Microbes. 2023;15(1):2192155.PubMedPubMedCentralCrossRef Chen B, Bai Y, Tong F, et al. Glycoursodeoxycholic acid regulates bile acids level and alters gut microbiota and glycolipid metabolism to attenuate diabetes. Gut Microbes. 2023;15(1):2192155.PubMedPubMedCentralCrossRef
48.
go back to reference Xu X, Shi X, Chen Y, et al. HS218 as an FXR antagonist suppresses gluconeogenesis by inhibiting FXR binding to PGC-1alpha promoter. Metabolism. 2018;85:126–38.PubMedCrossRef Xu X, Shi X, Chen Y, et al. HS218 as an FXR antagonist suppresses gluconeogenesis by inhibiting FXR binding to PGC-1alpha promoter. Metabolism. 2018;85:126–38.PubMedCrossRef
49.
go back to reference Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166.PubMedCrossRef Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166.PubMedCrossRef
50.
go back to reference Jiang J, Ma Y, Liu Y, et al. Glycine-beta-muricholic acid antagonizes the intestinal farnesoid X receptor-ceramide axis and ameliorates NASH in mice. Hepatol Commun. 2022;6(12):3363–78.PubMedPubMedCentralCrossRef Jiang J, Ma Y, Liu Y, et al. Glycine-beta-muricholic acid antagonizes the intestinal farnesoid X receptor-ceramide axis and ameliorates NASH in mice. Hepatol Commun. 2022;6(12):3363–78.PubMedPubMedCentralCrossRef
51.
go back to reference Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–88.PubMedCrossRef Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–88.PubMedCrossRef
52.
go back to reference Gillard J, Picalausa C, Ullmer C, et al. Enterohepatic Takeda G-protein coupled receptor 5 agonism in metabolic dysfunction-associated fatty liver disease and related glucose dysmetabolism. Nutrients. 2022;14(13):2707.PubMedPubMedCentralCrossRef Gillard J, Picalausa C, Ullmer C, et al. Enterohepatic Takeda G-protein coupled receptor 5 agonism in metabolic dysfunction-associated fatty liver disease and related glucose dysmetabolism. Nutrients. 2022;14(13):2707.PubMedPubMedCentralCrossRef
53.
go back to reference Li L, Zhao H, Chen B, et al. FXR activation alleviates tacrolimus-induced post-transplant diabetes mellitus by regulating renal gluconeogenesis and glucose uptake. J Transl Med. 2019;17(1):418.PubMedPubMedCentralCrossRef Li L, Zhao H, Chen B, et al. FXR activation alleviates tacrolimus-induced post-transplant diabetes mellitus by regulating renal gluconeogenesis and glucose uptake. J Transl Med. 2019;17(1):418.PubMedPubMedCentralCrossRef
54.
go back to reference Han SY, Song HK, Cha JJ, et al. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model. Acta Diabetol. 2021;58(4):495–503.PubMedCrossRef Han SY, Song HK, Cha JJ, et al. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model. Acta Diabetol. 2021;58(4):495–503.PubMedCrossRef
55.
go back to reference Wang XX, Xie C, Libby AE, et al. The role of FXR and TGR5 in reversing and preventing progression of Western diet-induced hepatic steatosis, inflammation, and fibrosis in mice. J Biol Chem. 2022;298(11): 102530.PubMedPubMedCentralCrossRef Wang XX, Xie C, Libby AE, et al. The role of FXR and TGR5 in reversing and preventing progression of Western diet-induced hepatic steatosis, inflammation, and fibrosis in mice. J Biol Chem. 2022;298(11): 102530.PubMedPubMedCentralCrossRef
56.
go back to reference Sedgeman LR, Beysen C, Allen RM, et al. Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G810–23.PubMedPubMedCentralCrossRef Sedgeman LR, Beysen C, Allen RM, et al. Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G810–23.PubMedPubMedCentralCrossRef
57.
go back to reference Zhang Y, Cheng Y, Liu J, et al. Tauroursodeoxycholic acid functions as a critical effector mediating insulin sensitization of metformin in obese mice. Redox Biol. 2022;57: 102481.PubMedPubMedCentralCrossRef Zhang Y, Cheng Y, Liu J, et al. Tauroursodeoxycholic acid functions as a critical effector mediating insulin sensitization of metformin in obese mice. Redox Biol. 2022;57: 102481.PubMedPubMedCentralCrossRef
58.
go back to reference Bravard A, Gerard C, Defois C, et al. Metformin treatment for 8 days impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Sci Rep. 2021;11(1):16684.PubMedPubMedCentralCrossRef Bravard A, Gerard C, Defois C, et al. Metformin treatment for 8 days impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Sci Rep. 2021;11(1):16684.PubMedPubMedCentralCrossRef
59.
go back to reference Wu H, Liu G, He Y, et al. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol. 2019;858: 172393.PubMedCrossRef Wu H, Liu G, He Y, et al. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol. 2019;858: 172393.PubMedCrossRef
60.
go back to reference Friedman ES, Li Y, Shen TD, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology. 2018;155(6):1741–52.PubMedCrossRef Friedman ES, Li Y, Shen TD, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology. 2018;155(6):1741–52.PubMedCrossRef
61.
go back to reference Carino A, Biagioli M, Marchiano S, et al. Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(10):1422–37.PubMedCrossRef Carino A, Biagioli M, Marchiano S, et al. Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(10):1422–37.PubMedCrossRef
62.
go back to reference Farr S, Stankovic B, Hoffman S, et al. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G682–93.PubMedCrossRef Farr S, Stankovic B, Hoffman S, et al. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G682–93.PubMedCrossRef
63.
go back to reference Depaoli AM, Zhou M, Kaplan DD, et al. FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis. Diabetes. 2019;68(6):1315–28.PubMedCrossRef Depaoli AM, Zhou M, Kaplan DD, et al. FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis. Diabetes. 2019;68(6):1315–28.PubMedCrossRef
64.
go back to reference Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–81.PubMedCrossRef Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–81.PubMedCrossRef
65.
go back to reference Liu H, Yokoyama F, Ishizuka S. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(7): 159319.PubMedCrossRef Liu H, Yokoyama F, Ishizuka S. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(7): 159319.PubMedCrossRef
66.
go back to reference Zhang J, Fan Y, Zeng C, et al. Tauroursodeoxycholic acid attenuates renal tubular injury in a mouse model of type 2 diabetes. Nutrients. 2016;8(10):589.PubMedPubMedCentralCrossRef Zhang J, Fan Y, Zeng C, et al. Tauroursodeoxycholic acid attenuates renal tubular injury in a mouse model of type 2 diabetes. Nutrients. 2016;8(10):589.PubMedPubMedCentralCrossRef
67.
go back to reference Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes. 2010;1(3):413–26.PubMedPubMedCentralCrossRef Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes. 2010;1(3):413–26.PubMedPubMedCentralCrossRef
68.
go back to reference Mak TK, Huang S, Guan B, et al. Bile acid, glucose, lipid profile, and liver enzyme changes in prediabetic patients 1 year after sleeve gastrectomy [J]. BMC Surg. 2020;20(1):329.PubMedPubMedCentralCrossRef Mak TK, Huang S, Guan B, et al. Bile acid, glucose, lipid profile, and liver enzyme changes in prediabetic patients 1 year after sleeve gastrectomy [J]. BMC Surg. 2020;20(1):329.PubMedPubMedCentralCrossRef
69.
go back to reference Shan CX, Qiu NC, Liu ME, et al. Effects of diet on bile acid metabolism and insulin resistance in type 2 diabetic rats after Roux-en-Y gastric bypass [J]. Obes Surg. 2018;28(10):3044–53.PubMedCrossRef Shan CX, Qiu NC, Liu ME, et al. Effects of diet on bile acid metabolism and insulin resistance in type 2 diabetic rats after Roux-en-Y gastric bypass [J]. Obes Surg. 2018;28(10):3044–53.PubMedCrossRef
70.
go back to reference Koliaki C, Liatis S, le Roux CW, et al. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC Endocr Disord. 2017;17(1):50.PubMedPubMedCentralCrossRef Koliaki C, Liatis S, le Roux CW, et al. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC Endocr Disord. 2017;17(1):50.PubMedPubMedCentralCrossRef
71.
go back to reference Mika A, Kaska L, Proczko-Stepaniak M, et al. Evidence that the length of bile loop determines serum bile acid concentration and glycemic control after bariatric surgery. Obes Surg. 2018;28(11):3405–14.PubMedCrossRef Mika A, Kaska L, Proczko-Stepaniak M, et al. Evidence that the length of bile loop determines serum bile acid concentration and glycemic control after bariatric surgery. Obes Surg. 2018;28(11):3405–14.PubMedCrossRef
72.
go back to reference Ikeda T, Aida M, Yoshida Y, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg. 2020;107(12):1673–85.PubMedCrossRef Ikeda T, Aida M, Yoshida Y, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg. 2020;107(12):1673–85.PubMedCrossRef
73.
go back to reference de Vuono S, Ricci MA, et al. Serum bile acid levels before and after sleeve gastrectomy and their correlation with obesity-related comorbidities. Obes Surg. 2019;29(8):2517–26.PubMedCrossRef de Vuono S, Ricci MA, et al. Serum bile acid levels before and after sleeve gastrectomy and their correlation with obesity-related comorbidities. Obes Surg. 2019;29(8):2517–26.PubMedCrossRef
74.
go back to reference Belgaumkar AP, Vincent RP, Carswell KA, et al. Changes in Bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg. 2016;26(6):1195–202.PubMedCrossRef Belgaumkar AP, Vincent RP, Carswell KA, et al. Changes in Bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg. 2016;26(6):1195–202.PubMedCrossRef
75.
go back to reference Escalona A, Munoz R, Irribarra V, et al. Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2016;12(4):763–9.PubMedCrossRef Escalona A, Munoz R, Irribarra V, et al. Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2016;12(4):763–9.PubMedCrossRef
76.
go back to reference Jorgensen NB, Dirksen C, Bojsen-Moller KN, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396-406.PubMedCrossRef Jorgensen NB, Dirksen C, Bojsen-Moller KN, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396-406.PubMedCrossRef
77.
go back to reference Shimizu H, Hatao F, Imamura K, et al. Early effects of sleeve gastrectomy on obesity-related cytokines and bile acid metabolism in morbidly obese japanese patients. Obes Surg. 2017;27(12):3223–9.PubMed Shimizu H, Hatao F, Imamura K, et al. Early effects of sleeve gastrectomy on obesity-related cytokines and bile acid metabolism in morbidly obese japanese patients. Obes Surg. 2017;27(12):3223–9.PubMed
78.
go back to reference Ueno T, Tanaka N, Imoto H, et al. Mechanism of bile acid reabsorption in the biliopancreatic limb after duodenal-jejunal bypass in rats. Obes Surg. 2020;30(7):2528–37.PubMedCrossRef Ueno T, Tanaka N, Imoto H, et al. Mechanism of bile acid reabsorption in the biliopancreatic limb after duodenal-jejunal bypass in rats. Obes Surg. 2020;30(7):2528–37.PubMedCrossRef
79.
go back to reference van den Broek M, de Heide LJM, Sips FLP, et al. Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery. Int J Obes. 2021;45(3):619–30.CrossRef van den Broek M, de Heide LJM, Sips FLP, et al. Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery. Int J Obes. 2021;45(3):619–30.CrossRef
80.
go back to reference Sang M, Xie C, Qiu S, et al. Cholecystectomy is associated with dysglycaemia: cross-sectional and prospective analyses. Diabetes Obes Metab. 2022;24(8):1656–60.PubMedPubMedCentralCrossRef Sang M, Xie C, Qiu S, et al. Cholecystectomy is associated with dysglycaemia: cross-sectional and prospective analyses. Diabetes Obes Metab. 2022;24(8):1656–60.PubMedPubMedCentralCrossRef
82.
go back to reference Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci. 2020;1461(1):37–52.PubMedCrossRef Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci. 2020;1461(1):37–52.PubMedCrossRef
83.
go back to reference Luo M, Yan J, Wu L, et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/FXR/FGF15 signaling pathway. J Immunol Res. 2021;2021:2264737.PubMedPubMedCentralCrossRef Luo M, Yan J, Wu L, et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/FXR/FGF15 signaling pathway. J Immunol Res. 2021;2021:2264737.PubMedPubMedCentralCrossRef
84.
go back to reference Munzker J, Haase N, Till A, et al. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome. 2022;10(1):96.PubMedPubMedCentralCrossRef Munzker J, Haase N, Till A, et al. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome. 2022;10(1):96.PubMedPubMedCentralCrossRef
86.
go back to reference Wei M, Shao Y, Liu QR, et al. Bile acid profiles within the enterohepatic circulation in a diabetic rat model after bariatric surgeries. Am J Physiol Gastrointest Liver Physiol. 2018;314(5):G537–46.PubMedCrossRef Wei M, Shao Y, Liu QR, et al. Bile acid profiles within the enterohepatic circulation in a diabetic rat model after bariatric surgeries. Am J Physiol Gastrointest Liver Physiol. 2018;314(5):G537–46.PubMedCrossRef
87.
go back to reference Garruti G, di Ciaula A, Wang HH, et al. Cross-talk between bile acids and gastro-intestinal and thermogenic hormones: clues from bariatric surgery. Ann Hepatol. 2017;16:S68–82.PubMedCrossRef Garruti G, di Ciaula A, Wang HH, et al. Cross-talk between bile acids and gastro-intestinal and thermogenic hormones: clues from bariatric surgery. Ann Hepatol. 2017;16:S68–82.PubMedCrossRef
88.
go back to reference Albaugh VL, Banan B, Antoun J, et al. Role Bile acids and glp-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology. 2019;156(4):1041–51.PubMedCrossRef Albaugh VL, Banan B, Antoun J, et al. Role Bile acids and glp-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology. 2019;156(4):1041–51.PubMedCrossRef
89.
go back to reference Flynn CR, Albaugh VL, Abumrad NN. Metabolic effects of bile acids: potential role in bariatric surgery. Cell Mol Gastroenterol Hepatol. 2019;8(2):235–46.PubMedPubMedCentralCrossRef Flynn CR, Albaugh VL, Abumrad NN. Metabolic effects of bile acids: potential role in bariatric surgery. Cell Mol Gastroenterol Hepatol. 2019;8(2):235–46.PubMedPubMedCentralCrossRef
90.
go back to reference Zhao L, Ma P, Peng Y, et al. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: Radix Scutellariae as a case. Phytomedicine. 2021;83: 153477.PubMedCrossRef Zhao L, Ma P, Peng Y, et al. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: Radix Scutellariae as a case. Phytomedicine. 2021;83: 153477.PubMedCrossRef
91.
go back to reference Goldfine AB. Modulating LDL cholesterol and glucose in patients with type 2 diabetes mellitus: targeting the bile acid pathway. Curr Opin Cardiol. 2008;23(5):502–11.PubMedCrossRef Goldfine AB. Modulating LDL cholesterol and glucose in patients with type 2 diabetes mellitus: targeting the bile acid pathway. Curr Opin Cardiol. 2008;23(5):502–11.PubMedCrossRef
92.
go back to reference Vitek L, Haluzik M. The role of bile acids in metabolic regulation. J Endocrinol. 2016;228(3):R85-96.PubMedCrossRef Vitek L, Haluzik M. The role of bile acids in metabolic regulation. J Endocrinol. 2016;228(3):R85-96.PubMedCrossRef
93.
go back to reference Yan Y, Sha Y, Huang X, et al. Roux-en-Y gastric bypass improves metabolic conditions in association with increased serum bile acids level and hepatic farnesoid X receptor expression in a T2DM rat model. Obes Surg. 2019;29(9):2912–22.PubMedCrossRef Yan Y, Sha Y, Huang X, et al. Roux-en-Y gastric bypass improves metabolic conditions in association with increased serum bile acids level and hepatic farnesoid X receptor expression in a T2DM rat model. Obes Surg. 2019;29(9):2912–22.PubMedCrossRef
94.
go back to reference Ploton M, Mazuy C, Gheeraert C, et al. The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol. 2018;69(5):1099–109.PubMedCrossRef Ploton M, Mazuy C, Gheeraert C, et al. The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol. 2018;69(5):1099–109.PubMedCrossRef
97.
go back to reference Ahlin S, Cefalo C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg. 2019;106(9):1178–86.PubMedCrossRef Ahlin S, Cefalo C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg. 2019;106(9):1178–86.PubMedCrossRef
98.
go back to reference Xu G, Song M. Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis. 2021;17(1):231–8.PubMedCrossRef Xu G, Song M. Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis. 2021;17(1):231–8.PubMedCrossRef
99.
go back to reference Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol. 2021;17(1):20–9.PubMedCrossRef Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol. 2021;17(1):20–9.PubMedCrossRef
100.
go back to reference Dutia R, Embrey M, O’Brien CS, et al. Temporal changes in bile acid levels and 12alpha-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int J Obes. 2015;39(5):806–13.CrossRef Dutia R, Embrey M, O’Brien CS, et al. Temporal changes in bile acid levels and 12alpha-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int J Obes. 2015;39(5):806–13.CrossRef
102.
go back to reference Reddy IA, Smith NK, Erreger K, et al. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol. 2018;16(7): e2006682.PubMedPubMedCentralCrossRef Reddy IA, Smith NK, Erreger K, et al. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol. 2018;16(7): e2006682.PubMedPubMedCentralCrossRef
103.
go back to reference Anhe FF, Varin TV, Schertzer JD, et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes. 2017;41(4):439–47.PubMedCrossRef Anhe FF, Varin TV, Schertzer JD, et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes. 2017;41(4):439–47.PubMedCrossRef
104.
105.
go back to reference Sasaki T, Watanabe Y, Kuboyama A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J Biol Chem. 2021;296: 100131.PubMedCrossRef Sasaki T, Watanabe Y, Kuboyama A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J Biol Chem. 2021;296: 100131.PubMedCrossRef
106.
go back to reference Düfer M, Hörth K, Wagner R, et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes. 2012;61(6):1479–89.PubMedPubMedCentralCrossRef Düfer M, Hörth K, Wagner R, et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes. 2012;61(6):1479–89.PubMedPubMedCentralCrossRef
107.
go back to reference Kuhre RE, Wewer Albrechtsen NJ, Larsen O, et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab. 2018;11(84):95. Kuhre RE, Wewer Albrechtsen NJ, Larsen O, et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab. 2018;11(84):95.
108.
go back to reference Qiang S, Tao L, Zhou J, et al. Knockout of farnesoid X receptor aggravates process of diabetic cardiomyopathy. Diabetes Res Clin Pract. 2020;161: 108033.PubMedCrossRef Qiang S, Tao L, Zhou J, et al. Knockout of farnesoid X receptor aggravates process of diabetic cardiomyopathy. Diabetes Res Clin Pract. 2020;161: 108033.PubMedCrossRef
109.
go back to reference Pierre JF, Li Y, Gomes CK, et al. Bile diversion improves metabolic phenotype dependent on farnesoid X receptor (FXR). Obesity. 2019;27(5):803–12.PubMedCrossRef Pierre JF, Li Y, Gomes CK, et al. Bile diversion improves metabolic phenotype dependent on farnesoid X receptor (FXR). Obesity. 2019;27(5):803–12.PubMedCrossRef
110.
go back to reference Li K, Zou J, Li S, et al. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol Metab. 2020;37: 100980.PubMedPubMedCentralCrossRef Li K, Zou J, Li S, et al. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol Metab. 2020;37: 100980.PubMedPubMedCentralCrossRef
111.
go back to reference Dehondt H, Marino A, Butruille L, et al. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol Metab. 2023;69: 101686.PubMedPubMedCentralCrossRef Dehondt H, Marino A, Butruille L, et al. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol Metab. 2023;69: 101686.PubMedPubMedCentralCrossRef
112.
go back to reference McGavigan AK, Garibay D, Henseler ZM, et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66(2):226–34.PubMedCrossRef McGavigan AK, Garibay D, Henseler ZM, et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66(2):226–34.PubMedCrossRef
113.
go back to reference Makki K, Brolin H, Petersen N, et al. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut. 2023;72(2):314–24.PubMedCrossRef Makki K, Brolin H, Petersen N, et al. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut. 2023;72(2):314–24.PubMedCrossRef
114.
go back to reference Patton A, Khan FH, Kohli R. Impact of fibroblast growth factors 19 and 21 in bariatric metabolism. Dig Dis. 2017;35(3):191–6.PubMedCrossRef Patton A, Khan FH, Kohli R. Impact of fibroblast growth factors 19 and 21 in bariatric metabolism. Dig Dis. 2017;35(3):191–6.PubMedCrossRef
115.
go back to reference Guo JY, Chen HH, Lee WJ, et al. Fibroblast growth factor 19 and fibroblast growth factor 21 regulation in obese diabetics, and non-alcoholic fatty liver disease after gastric bypass. Nutrients. 2022;14(3):645.PubMedPubMedCentralCrossRef Guo JY, Chen HH, Lee WJ, et al. Fibroblast growth factor 19 and fibroblast growth factor 21 regulation in obese diabetics, and non-alcoholic fatty liver disease after gastric bypass. Nutrients. 2022;14(3):645.PubMedPubMedCentralCrossRef
116.
go back to reference Bozadjieva N, Heppner KM, Seeley RJ. Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. 2018;67(9):1720–8.PubMedPubMedCentralCrossRef Bozadjieva N, Heppner KM, Seeley RJ. Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. 2018;67(9):1720–8.PubMedPubMedCentralCrossRef
117.
go back to reference Wang Y, Dang N, Sun P, et al. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats. Endocr J. 2017;64(5):543–52.PubMedCrossRef Wang Y, Dang N, Sun P, et al. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats. Endocr J. 2017;64(5):543–52.PubMedCrossRef
118.
go back to reference Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;36(10):909–21.PubMedPubMedCentralCrossRef Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;36(10):909–21.PubMedPubMedCentralCrossRef
119.
go back to reference Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56.PubMed Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56.PubMed
120.
go back to reference Lee JH, Lee J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci. 2022;23(9):4843.PubMedPubMedCentralCrossRef Lee JH, Lee J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci. 2022;23(9):4843.PubMedPubMedCentralCrossRef
121.
go back to reference Bao X, Li J, Ren C, et al. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chem Biol Interact. 2022;365: 110074.PubMedCrossRef Bao X, Li J, Ren C, et al. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chem Biol Interact. 2022;365: 110074.PubMedCrossRef
122.
go back to reference Sansome DJ, Xie C, Veedfald S, et al. Mechanism of glucose-lowering by metformin in type 2 diabetes: role of bile acids. Diabetes Obes Metab. 2020;22(2):141–8.PubMedCrossRef Sansome DJ, Xie C, Veedfald S, et al. Mechanism of glucose-lowering by metformin in type 2 diabetes: role of bile acids. Diabetes Obes Metab. 2020;22(2):141–8.PubMedCrossRef
123.
go back to reference Kok BP, Galmozzi A, Littlejohn NK, et al. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol Metab. 2018;16:76–87.PubMedPubMedCentralCrossRef Kok BP, Galmozzi A, Littlejohn NK, et al. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol Metab. 2018;16:76–87.PubMedPubMedCentralCrossRef
124.
go back to reference Sun S, Yang Y, Xiong R, et al. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci. 2022;311(Pt A): 121141.PubMedCrossRef Sun S, Yang Y, Xiong R, et al. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci. 2022;311(Pt A): 121141.PubMedCrossRef
125.
go back to reference Kim KH, Lee IS, Park JY, et al. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front Pharmacol. 2018;9:1071.PubMedPubMedCentralCrossRef Kim KH, Lee IS, Park JY, et al. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front Pharmacol. 2018;9:1071.PubMedPubMedCentralCrossRef
126.
Metadata
Title
Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus
Authors
Yisen Hou
Xinzhe Zhai
Xiaotao Wang
Yi Wu
Heyue Wang
Yaxin Qin
Jianli Han
Yong Meng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2023
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-023-01207-6

Other articles of this Issue 1/2023

Diabetology & Metabolic Syndrome 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine