Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2023

Open Access 01-12-2023 | Insulins | Review

2022: Position of Brazilian Diabetes Society on exercise recommendations for people with type 1 and type 2 diabetes

Authors: William Valadares Campos Pereira, Denise Maria Martins Vancea, Ricardo de Andrade Oliveira, Yuri Galeno Pinheiro Chaves de Freitas, Rodrigo Nunes Lamounier, Wellington S. Silva Júnior, Andrea Messias Britto Fioretti, Clayton Luiz Dornelles Macedo, Marcello Casaccia Bertoluci, Roberto Luis Zagury

Published in: Diabetology & Metabolic Syndrome | Issue 1/2023

Login to get access

Abstract

Introduction

For individuals diagnosed with diabetes mellitus, the practice of properly oriented physical exercises brings significant benefits to the individual's health and is considered an indispensable tool for metabolic management. The individualization of exercise routines is an essential aspect for therapeutic success, despite the need to consider some general recommendations. This review is an authorized literal translation of the Brazilian Society of Diabetes (SBD) Guidelines 2021–2022, which is based on scientific evidence and provides guidance on physical activities and exercises aimed at individuals with type 1 and 2 diabetes.

Methods

SBD designated 9 specialists from its “Department of Diabetes, Exercise & Sports” to author chapters on physical activities and exercises directed to individuals with type 1 and 2 diabetes. The aim of these chapters was to highlight recommendations in accordance with Evidence Levels, based on what is described in the literature. These chapters were analyzed by the SBD Central Committee, which is also responsible for the SBD 2021–2022 guidelines. Main clinical inquiries were selected to perform a narrated review by using MEDLINE via PubMed. Top available evidence, such as high-quality clinical trials, large observational studies and meta-analyses related to physical activity and exercise advisory, were analyzed. The adopted MeSh terms were [diabetes], [type 1 diabetes], [type 2 diabetes], [physical activity] [physical exercise].

Results

17 recommendations were defined by the members. For this review, it was considered different Evidence Levels, as well as different Classes of Recommendations. As to Evidence Levels, the following levels were contemplated: Level A) More than one randomized clinical trial or a randomized clinical trial meta-analysis with low heterogeneity. Level B) Meta analysis with observational studies, one randomized clinical trial, sizeable observational studies and sub-groups analysis. Level C) Small non-randomized studies, cross-sectional studies, case control studies, guidelines or experts’ opinions. In respect to Recommendation Classes, the following criteria were adopted: I. “Recommended”: Meaning there was a consent of more than 90% of the panel; IIa. “Must be considered”: meaning there is a general preference of the panel which 70–90% agrees; IIb. “Can be considered”. 50–70% agrees; III Not recommended: There is a consensus that the intervention should not be performed.

Conclusion

Physical exercise aids on the glycemic control of type 2 diabetes individuals while also decreasing cardiovascular risk in individuals with type 1 and 2 diabetes. Individuals diagnosed with diabetes should perform combined aerobic and resistance exercises in order to manage the disease. In addition, exercises focusing on flexibility and balance should be specially addressed on elderly individuals. Diabetes individuals using insulin as therapeutic treatment should properly monitor glycemia levels before, during and after exercise sessions to minimize health incidents, such as hypoglycemia.
Literature
2.
go back to reference Pan B, et al. Exercise training modalities in individuals with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:1–14.CrossRef Pan B, et al. Exercise training modalities in individuals with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:1–14.CrossRef
3.
go back to reference Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in individuals with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57:1789–97.CrossRef Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in individuals with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57:1789–97.CrossRef
4.
go back to reference Aljawarneh YM, Wardell DW, Wood GL, Rozmus CL. A Systematic review of physical activity and exercise on physiological and biochemical outcomes in children and adolescents with type 1 diabetes. J Nurs Scholarsh. 2019;51:337–45.CrossRef Aljawarneh YM, Wardell DW, Wood GL, Rozmus CL. A Systematic review of physical activity and exercise on physiological and biochemical outcomes in children and adolescents with type 1 diabetes. J Nurs Scholarsh. 2019;51:337–45.CrossRef
5.
go back to reference Colberg SR, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.CrossRef Colberg SR, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.CrossRef
6.
go back to reference Jewiss D, Ostman C, Smart KNA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2017;139:380–91. Jewiss D, Ostman C, Smart KNA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2017;139:380–91.
8.
go back to reference Absil H, Baudet L, Robert A, Lysy PA. Benefits of physical activity in children and adolescents with type 1 diabetes: a systematic review. Diabetes Res Clin Pract. 2019;156: 107810.CrossRef Absil H, Baudet L, Robert A, Lysy PA. Benefits of physical activity in children and adolescents with type 1 diabetes: a systematic review. Diabetes Res Clin Pract. 2019;156: 107810.CrossRef
9.
go back to reference Baldi JC, Hofman PL. Does careful glycemic control improve aerobic capacity in subjects with type 1 diabetes? Exerc Sport Sci Rev. 2010;38:161–7.CrossRef Baldi JC, Hofman PL. Does careful glycemic control improve aerobic capacity in subjects with type 1 diabetes? Exerc Sport Sci Rev. 2010;38:161–7.CrossRef
10.
go back to reference Skrivarhaug T, et al. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic individuals in Norway. Diabetologia. 2006;49:298–305.CrossRef Skrivarhaug T, et al. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic individuals in Norway. Diabetologia. 2006;49:298–305.CrossRef
12.
go back to reference Wu N, Bredin SSD, Jamnik VKJ, Koehle MS, Guan Y, Shellington EM, Li Y, Li J, Warburton DER. Association between physical activity level and cardiovascular risk factors in adolescents living with type 1 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):62. https://doi.org/10.1186/s12933-021-01255-0.CrossRef Wu N, Bredin SSD, Jamnik VKJ, Koehle MS, Guan Y, Shellington EM, Li Y, Li J, Warburton DER. Association between physical activity level and cardiovascular risk factors in adolescents living with type 1 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):62. https://​doi.​org/​10.​1186/​s12933-021-01255-0.CrossRef
14.
go back to reference Moser O, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes. 2020;21:1375–93.CrossRef Moser O, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes. 2020;21:1375–93.CrossRef
18.
go back to reference Soliman EZ, et al. Electrocardiographic abnormalities and cardiovascular disease risk in type 1 diabetes: the epidemiology of diabetes interventions and complications (EDIC) study. Diabetes Care. 2017;40:793–9.CrossRef Soliman EZ, et al. Electrocardiographic abnormalities and cardiovascular disease risk in type 1 diabetes: the epidemiology of diabetes interventions and complications (EDIC) study. Diabetes Care. 2017;40:793–9.CrossRef
20.
go back to reference Tikkanen-Dolenc H, et al. Physical activity reduces risk of premature mortality in individuals with type 1 diabetes with and without kidney disease. Diabetes Care. 2017;40:1727–32.CrossRef Tikkanen-Dolenc H, et al. Physical activity reduces risk of premature mortality in individuals with type 1 diabetes with and without kidney disease. Diabetes Care. 2017;40:1727–32.CrossRef
21.
go back to reference Scott SN, et al. High-intensity interval training improves aerobic capacity without a detrimental decline in blood glucose in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2018;104:604–12.CrossRef Scott SN, et al. High-intensity interval training improves aerobic capacity without a detrimental decline in blood glucose in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2018;104:604–12.CrossRef
22.
go back to reference Reed JL, Pipe AL. The talk test: a useful tool for prescribing and monitoring exercise intensity. Curr Opin Cardiol. 2014;29:475–80.CrossRef Reed JL, Pipe AL. The talk test: a useful tool for prescribing and monitoring exercise intensity. Curr Opin Cardiol. 2014;29:475–80.CrossRef
23.
go back to reference Boff W, et al. Superior effects of high-intensity interval vs. moderate-intensity continuous training on endothelial function and cardiorespiratory fitness in individuals with type 1 diabetes: a randomized controlled trial. Front Physiol. 2019;10:450.CrossRef Boff W, et al. Superior effects of high-intensity interval vs. moderate-intensity continuous training on endothelial function and cardiorespiratory fitness in individuals with type 1 diabetes: a randomized controlled trial. Front Physiol. 2019;10:450.CrossRef
24.
go back to reference Gomes JLB, et al. Cardiovascular and enjoyment comparisons after active videogame and running in type 1 diabetes individuals: A randomized crossover trial. Games Health J. 2021;10:339–46. Gomes JLB, et al. Cardiovascular and enjoyment comparisons after active videogame and running in type 1 diabetes individuals: A randomized crossover trial. Games Health J. 2021;10:339–46.
26.
go back to reference Yardley JE, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35:669–75.CrossRef Yardley JE, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35:669–75.CrossRef
29.
go back to reference Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity individuals with type 1. Diabetes. 2005;28(6):1289–94. Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity individuals with type 1. Diabetes. 2005;28(6):1289–94.
30.
go back to reference Fokkert M, et al. Performance of the eversense versus the free style libre flash glucose monitor during exercise and normal daily activities in subjects with type 1 diabetes mellitus. BMJ Open Diabetes Res Care. 2020;8:1–7.CrossRef Fokkert M, et al. Performance of the eversense versus the free style libre flash glucose monitor during exercise and normal daily activities in subjects with type 1 diabetes mellitus. BMJ Open Diabetes Res Care. 2020;8:1–7.CrossRef
31.
go back to reference Houlder SK, Yardley JE. Continuous glucose monitoring and exercise in type 1 diabetes: Past, present and future. Biosensors. 2018;8:18–21.CrossRef Houlder SK, Yardley JE. Continuous glucose monitoring and exercise in type 1 diabetes: Past, present and future. Biosensors. 2018;8:18–21.CrossRef
32.
go back to reference Tagougui S, Taleb N, Rabasa-Ihoret R. The benefits and limits of technological advances in glucose management around physical activity in individuals type 1 diabetes. Front Endocrinol (Lausanne). 2019;18(9):818.CrossRef Tagougui S, Taleb N, Rabasa-Ihoret R. The benefits and limits of technological advances in glucose management around physical activity in individuals type 1 diabetes. Front Endocrinol (Lausanne). 2019;18(9):818.CrossRef
34.
go back to reference Moniotte S, Owen M, Barrea T, Robert A, Lysy PA. Outcomes of algorithm-based modifications of insulinotherapy during exercise in MDI vs insulin pump-treated children with type 1 diabetes: Results from the TREAD-DIAB study. Pediatr Diabetes. 2018;18:925–33.CrossRef Moniotte S, Owen M, Barrea T, Robert A, Lysy PA. Outcomes of algorithm-based modifications of insulinotherapy during exercise in MDI vs insulin pump-treated children with type 1 diabetes: Results from the TREAD-DIAB study. Pediatr Diabetes. 2018;18:925–33.CrossRef
35.
go back to reference Parkin CG, Homberg A, Hinzmann R. 10th annual symposium on self-monitoring of blood Glucose, April 27–29, 2017, Warsaw. Poland Diabetes Technol Ther. 2018;20:68–89.CrossRef Parkin CG, Homberg A, Hinzmann R. 10th annual symposium on self-monitoring of blood Glucose, April 27–29, 2017, Warsaw. Poland Diabetes Technol Ther. 2018;20:68–89.CrossRef
36.
go back to reference Garber CE, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.CrossRef Garber CE, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.CrossRef
37.
go back to reference Morrison S, Colberg SR, Mariano M, Parson HK, Vinik AI. Balance training reduces falls risk in older individuals with type 2 diabetes. Diabetes Care. 2010;33:748–50.CrossRef Morrison S, Colberg SR, Mariano M, Parson HK, Vinik AI. Balance training reduces falls risk in older individuals with type 2 diabetes. Diabetes Care. 2010;33:748–50.CrossRef
38.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. English J. 2002;346:305–10. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. English J. 2002;346:305–10.
39.
go back to reference American Diabetes Association. 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S53-72.CrossRef American Diabetes Association. 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S53-72.CrossRef
40.
go back to reference Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of individuals with obesity. Endocr Pract. 2016;22(Suppl 3):1–203.CrossRef Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of individuals with obesity. Endocr Pract. 2016;22(Suppl 3):1–203.CrossRef
41.
go back to reference Mul JD, Stanford KI, Hirshman MF, Goodyear LJ. Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci. 2015;135:17–37.CrossRef Mul JD, Stanford KI, Hirshman MF, Goodyear LJ. Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci. 2015;135:17–37.CrossRef
42.
go back to reference Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90.CrossRef Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90.CrossRef
43.
go back to reference Petridou A, Siopi A, Mougios V. Exercise in the management of obesity. Metabolism. 2019;92:163–9.CrossRef Petridou A, Siopi A, Mougios V. Exercise in the management of obesity. Metabolism. 2019;92:163–9.CrossRef
44.
go back to reference Bailey DP, Hewson DJ, Champion RB, Sayegh SM. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am J Prev Med. 2019;57:408–16.CrossRef Bailey DP, Hewson DJ, Champion RB, Sayegh SM. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am J Prev Med. 2019;57:408–16.CrossRef
45.
go back to reference Biswas A, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.CrossRef Biswas A, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.CrossRef
46.
go back to reference Ahn S, Song R. Effects of tai chi exercise on glucose control, neuropathy scores, balance, and quality of life in individuals with type 2 diabetes and neuropathy. J Altern Complement Med. 2012;18:1172–8.CrossRef Ahn S, Song R. Effects of tai chi exercise on glucose control, neuropathy scores, balance, and quality of life in individuals with type 2 diabetes and neuropathy. J Altern Complement Med. 2012;18:1172–8.CrossRef
47.
go back to reference Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older individuals living in the community. Cochrane Database Syst Rev. 2012;12(9):CD007146. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older individuals living in the community. Cochrane Database Syst Rev. 2012;12(9):CD007146.
48.
go back to reference Swinburn BA, Walter LG, Arroll B, Tilyard MW, Russell DG. The green prescription study: a randomized controlled trial of written exercise advice provided by general practitioners. Am J Public Health. 1998;88(2):288–91.CrossRef Swinburn BA, Walter LG, Arroll B, Tilyard MW, Russell DG. The green prescription study: a randomized controlled trial of written exercise advice provided by general practitioners. Am J Public Health. 1998;88(2):288–91.CrossRef
49.
go back to reference Petrella RJ, Koval JJ, Cunningham DA, Paterson DH. Can primary care doctors prescribe exercise to improve fitness? The Step Test Exercise Prescription (STEP) Project. Am J Prev Med. 2003;24(4):316–22.CrossRef Petrella RJ, Koval JJ, Cunningham DA, Paterson DH. Can primary care doctors prescribe exercise to improve fitness? The Step Test Exercise Prescription (STEP) Project. Am J Prev Med. 2003;24(4):316–22.CrossRef
50.
go back to reference Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRef Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRef
51.
go back to reference Pope HG, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S. Adverse health consequences of performance-enhancing drugs: an endocrine society scientific statement. Endocr Rev. 2014;35(3):341–75.CrossRef Pope HG, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S. Adverse health consequences of performance-enhancing drugs: an endocrine society scientific statement. Endocr Rev. 2014;35(3):341–75.CrossRef
52.
go back to reference Ip EJ, Barnett MJ, Tenerowicz MJ, Kim JA, Wei H, Perry PJ. Women and anabolic steroids: an analysis of a dozen users. Clin J Sport Med. 2010;20(6):475–81.CrossRef Ip EJ, Barnett MJ, Tenerowicz MJ, Kim JA, Wei H, Perry PJ. Women and anabolic steroids: an analysis of a dozen users. Clin J Sport Med. 2010;20(6):475–81.CrossRef
53.
go back to reference Irwig MS, Fleseriu M, Jonklaas J, Tritos NA, Yuen KCJ, Correa R, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53.CrossRef Irwig MS, Fleseriu M, Jonklaas J, Tritos NA, Yuen KCJ, Correa R, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53.CrossRef
Metadata
Title
2022: Position of Brazilian Diabetes Society on exercise recommendations for people with type 1 and type 2 diabetes
Authors
William Valadares Campos Pereira
Denise Maria Martins Vancea
Ricardo de Andrade Oliveira
Yuri Galeno Pinheiro Chaves de Freitas
Rodrigo Nunes Lamounier
Wellington S. Silva Júnior
Andrea Messias Britto Fioretti
Clayton Luiz Dornelles Macedo
Marcello Casaccia Bertoluci
Roberto Luis Zagury
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2023
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-022-00945-3

Other articles of this Issue 1/2023

Diabetology & Metabolic Syndrome 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine