Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2022

Open Access 01-12-2022 | Diabetes | Research

Diagnostic significance of serum FGD5-AS1 and its predictive value for the development of cardiovascular diseases in patients with type 2 diabetes

Authors: Yongdi Wang, Jian Wang

Published in: Diabetology & Metabolic Syndrome | Issue 1/2022

Login to get access

Abstract

Background

As a result of the continuous rise in the incidence of type 2 diabetes mellitus (T2DM), related cardiovascular diseases (CVDs) have been a main healthy burden worldwide. This study aimed to investigate the potential role of FGD5-AS1 as a biomarker for the diagnosis of T2DM and predicting cardiovascular complications in T2DM.

Methods

Three hundred subjects were recruited in this study, including 100 T2DM patients without CVDs, 100 T2DM patients with CVDs as well as 100 healthy subjects. Plasma FGD5-AS1 level was quantified using RT-qPCR assay. The correlation of FGD5-AS1 level with other key variables was assessed using Pearson correlation analysis. ROC curve analysis was performed to evaluate the diagnostic value of FGD5-AS1 for T2DM and related CVDs. The effect of FGD5-AS1 on AC16 and HA-VSMCs was determined.

Results

FGD5-AS1 level showed a stepwise decrease in individuals with T2DM and CVDs compared to healthy persons. FGD5-AS1 was associated with BMI, systolic blood pressure, diastolic blood pressure, fasting glucose, 2-h postprandial blood glucose, HbA1c, triglycerides, usCRP, and HDL-cholesterol. The ROC analysis indicated FGD5-AS1 had a significant overall predictive ability to diagnose T2DM, T2DM with CVDs, and the combination of both. FGD5-AS1 increases the growth but alleviates apoptosis and fibrosis of high glucose-induced AC16 cells. FGD5-AS1 attenuate the growth and calcification but induced apoptosis of high glucose-treated HA-VSMC cells.

Conclusions

These results suggest that FGD5-AS1 are associated with T2DM and measuring FGD5-AS1 could potentially contribute to T2DM screening and prediction for risk of cardiovascular complication.
Literature
1.
go back to reference Association AD. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S15–33.CrossRef Association AD. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S15–33.CrossRef
2.
go back to reference Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):104–9.CrossRef Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):104–9.CrossRef
3.
go back to reference Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.CrossRef Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.CrossRef
4.
go back to reference Htay T, Soe K, Lopez-Perez A, Doan AH, Romagosa MA, Aung K. Mortality and cardiovascular disease in type 1 and type 2 diabetes. Curr Cardiol Rep. 2019;21(6):45.CrossRef Htay T, Soe K, Lopez-Perez A, Doan AH, Romagosa MA, Aung K. Mortality and cardiovascular disease in type 1 and type 2 diabetes. Curr Cardiol Rep. 2019;21(6):45.CrossRef
5.
go back to reference Association AD. 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S125–50.CrossRef Association AD. 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S125–50.CrossRef
6.
go back to reference Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509.CrossRef Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509.CrossRef
7.
go back to reference Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):110–6.CrossRef Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):110–6.CrossRef
8.
go back to reference Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep. 2019;21(4):21.CrossRef Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep. 2019;21(4):21.CrossRef
9.
go back to reference Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.CrossRef Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.CrossRef
10.
go back to reference Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.CrossRef Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.CrossRef
11.
go back to reference Guo J, Liu Z, Gong R. Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci. 2019;133(12):1321–39.CrossRef Guo J, Liu Z, Gong R. Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci. 2019;133(12):1321–39.CrossRef
12.
go back to reference Das S, Reddy MA, Natarajan R. Role of epigenetic mechanisms regulated by enhancers and long noncoding RNAs in cardiovascular disease. Curr Opin Cardiol. 2020;35(3):234–41.CrossRef Das S, Reddy MA, Natarajan R. Role of epigenetic mechanisms regulated by enhancers and long noncoding RNAs in cardiovascular disease. Curr Opin Cardiol. 2020;35(3):234–41.CrossRef
13.
go back to reference Li X, Zhao Z, Gao C, Rao L, Hao P, Jian D, et al. The diagnostic value of whole blood lncRNA ENST00000550337.1 for pre-diabetes and type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2017;125(6):377–83.CrossRef Li X, Zhao Z, Gao C, Rao L, Hao P, Jian D, et al. The diagnostic value of whole blood lncRNA ENST00000550337.1 for pre-diabetes and type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2017;125(6):377–83.CrossRef
14.
go back to reference Wang H, Xia Y, Zhang Y. Diagnostic significance of serum lncRNA HOTAIR and its predictive value for the development of chronic complications in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):97.CrossRef Wang H, Xia Y, Zhang Y. Diagnostic significance of serum lncRNA HOTAIR and its predictive value for the development of chronic complications in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):97.CrossRef
15.
go back to reference Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics. 2019;9(15):4558–66.CrossRef Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics. 2019;9(15):4558–66.CrossRef
16.
go back to reference Zhang X, Gao Y, Zhang X, Zhang X, Xiang Y, Fu Q, et al. FGD5-AS1 is a hub lncRNA ceRNA in hearts with tetralogy of fallot which regulates congenital heart disease genes transcriptionally and epigenetically. Front Cell Dev Biol. 2021;9:630634.CrossRef Zhang X, Gao Y, Zhang X, Zhang X, Xiang Y, Fu Q, et al. FGD5-AS1 is a hub lncRNA ceRNA in hearts with tetralogy of fallot which regulates congenital heart disease genes transcriptionally and epigenetically. Front Cell Dev Biol. 2021;9:630634.CrossRef
17.
go back to reference Chen YX, Ding J, Zhou WE, Zhang X, Sun XT, Wang XY, et al. Identification and functional prediction of long non-coding RNAs in dilated cardiomyopathy by bioinformatics analysis. Front Genet. 2021;12:648111.CrossRef Chen YX, Ding J, Zhou WE, Zhang X, Sun XT, Wang XY, et al. Identification and functional prediction of long non-coding RNAs in dilated cardiomyopathy by bioinformatics analysis. Front Genet. 2021;12:648111.CrossRef
18.
go back to reference Yang X, Pratley RE, Tokraks S, Bogardus C, Permana PA. Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-resistant Pima Indians. Diabetologia. 2002;45(11):1584–93.CrossRef Yang X, Pratley RE, Tokraks S, Bogardus C, Permana PA. Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-resistant Pima Indians. Diabetologia. 2002;45(11):1584–93.CrossRef
19.
go back to reference Chinese Society of Cardiology of Chinese Medical Association CDP, of RCoCA. Chinese guideline on the primary prevention of cardiovascular diseases. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(12):1000–38. Chinese Society of Cardiology of Chinese Medical Association CDP, of RCoCA. Chinese guideline on the primary prevention of cardiovascular diseases. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(12):1000–38.
20.
go back to reference Joint Task Force for Guideline on the Assessment and Management of Cardiovascular Risk in China. Guideline on the assessment and management of cardiovascular risk in China. Zhonghua Yu Fang Yi Xue Za Zhi. 2019;53(1):13–35. Joint Task Force for Guideline on the Assessment and Management of Cardiovascular Risk in China. Guideline on the assessment and management of cardiovascular risk in China. Zhonghua Yu Fang Yi Xue Za Zhi. 2019;53(1):13–35.
21.
go back to reference Zhong JY, Cui XJ, Zhan JK, Wang YJ, Li S, Lin X, et al. LncRNA-ES3 inhibition by Bhlhe40 is involved in high glucose-induced calcification/senescence of vascular smooth muscle cells. Ann NY Acad Sci. 2020;1474(1):61–72.CrossRef Zhong JY, Cui XJ, Zhan JK, Wang YJ, Li S, Lin X, et al. LncRNA-ES3 inhibition by Bhlhe40 is involved in high glucose-induced calcification/senescence of vascular smooth muscle cells. Ann NY Acad Sci. 2020;1474(1):61–72.CrossRef
22.
go back to reference Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: the role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci. 2020;240:117138.CrossRef Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: the role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci. 2020;240:117138.CrossRef
23.
go back to reference Chen Y, He Y, Zhou H. The potential role of lncRNAs in diabetes and diabetic microvascular complications. Endocr J. 2020;67(7):659–68.CrossRef Chen Y, He Y, Zhou H. The potential role of lncRNAs in diabetes and diabetic microvascular complications. Endocr J. 2020;67(7):659–68.CrossRef
24.
go back to reference Wu L, Zhu X, Song Z, Guo M, Liang J, Yan D. FGD5-AS1 facilitates glioblastoma progression by activation of Wnt/β-catenin signaling via regulating miR-129-5p/HNRNPK axis. Life Sci. 2020;256:117998.CrossRef Wu L, Zhu X, Song Z, Guo M, Liang J, Yan D. FGD5-AS1 facilitates glioblastoma progression by activation of Wnt/β-catenin signaling via regulating miR-129-5p/HNRNPK axis. Life Sci. 2020;256:117998.CrossRef
25.
go back to reference Ge C, Dong J, Chu Y, Cao S, Zhang J, Wei J. LncRNA FGD5-AS1 promotes tumor growth by regulating MCL1 via sponging miR-153-3p in oral cancer. Aging. 2020;12(14):14355–64.CrossRef Ge C, Dong J, Chu Y, Cao S, Zhang J, Wei J. LncRNA FGD5-AS1 promotes tumor growth by regulating MCL1 via sponging miR-153-3p in oral cancer. Aging. 2020;12(14):14355–64.CrossRef
26.
go back to reference Fu J, Cai H, Wu Y, Fang S, Wang D. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis. Gene. 2020;755:144886.CrossRef Fu J, Cai H, Wu Y, Fang S, Wang D. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis. Gene. 2020;755:144886.CrossRef
27.
go back to reference Shen LS, Hu XF, Chen T, Shen GL, Cheng D. Integrated network analysis to explore the key mRNAs and lncRNAs in acute myocardial infarction. Math Biosci Eng. 2019;16(6):6426–37.CrossRef Shen LS, Hu XF, Chen T, Shen GL, Cheng D. Integrated network analysis to explore the key mRNAs and lncRNAs in acute myocardial infarction. Math Biosci Eng. 2019;16(6):6426–37.CrossRef
28.
go back to reference Valla M, Mjønes PG, Engstrøm MJ, Ytterhus B, Bordin DL, van Loon B, et al. Characterization of FGD5 expression in primary breast cancers and lymph node metastases. J Histochem Cytochem. 2018;66(11):787–99.CrossRef Valla M, Mjønes PG, Engstrøm MJ, Ytterhus B, Bordin DL, van Loon B, et al. Characterization of FGD5 expression in primary breast cancers and lymph node metastases. J Histochem Cytochem. 2018;66(11):787–99.CrossRef
29.
go back to reference Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, et al. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR-195. Mol Med Rep. 2020;22(6):4579–88.CrossRef Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, et al. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR-195. Mol Med Rep. 2020;22(6):4579–88.CrossRef
30.
go back to reference Zhang XQ, Song LH, Feng SJ, Dai XM. LncRNA FGD5-AS1 acts as a competing endogenous RNA for miRNA-223 to lessen oxygen-glucose deprivation and simulated reperfusion (OGD/R)-induced neurons injury. Folia Neuropathol. 2019;57(4):357–65.CrossRef Zhang XQ, Song LH, Feng SJ, Dai XM. LncRNA FGD5-AS1 acts as a competing endogenous RNA for miRNA-223 to lessen oxygen-glucose deprivation and simulated reperfusion (OGD/R)-induced neurons injury. Folia Neuropathol. 2019;57(4):357–65.CrossRef
32.
go back to reference Xia Y, Wang WC, Shen WH, Xu K, Hu YY, Han GH, et al. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454-3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem Biol Interact. 2021;349:109652.CrossRef Xia Y, Wang WC, Shen WH, Xu K, Hu YY, Han GH, et al. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454-3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem Biol Interact. 2021;349:109652.CrossRef
Metadata
Title
Diagnostic significance of serum FGD5-AS1 and its predictive value for the development of cardiovascular diseases in patients with type 2 diabetes
Authors
Yongdi Wang
Jian Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2022
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-022-00789-x

Other articles of this Issue 1/2022

Diabetology & Metabolic Syndrome 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine