Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2018

Open Access 01-12-2018 | Research article

Tofacitinib inhibits granulocyte–macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils

Authors: Makiko Yashiro Furuya, Tomoyuki Asano, Yuya Sumichika, Shuzo Sato, Hiroko Kobayashi, Hiroshi Watanabe, Eiji Suzuki, Hideko Kozuru, Hiroshi Yatsuhashi, Tomohiro Koga, Hiromasa Ohira, Hideharu Sekine, Atsushi Kawakami, Kiyoshi Migita

Published in: Arthritis Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Granulocyte–macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine that activates myeloid cells to initiate tissue inflammation. However, the molecular actions of GM-CSF against innate immunity are still poorly characterized. Here, we investigated the in vitro effects of GM-CSF on the activation of human myeloid lineages, neutrophils, and the underlying intracellular signaling mechanism, including inflammasome activation.

Methods

Human neutrophils were stimulated with GM-CSF in the presence or absence of tofacitinib. The cellular supernatants were analyzed for interleukin-1 beta (IL-1β) and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time polymerase chain reaction. Protein phosphorylation of neutrophils was assessed by Western blot using phospho-specific antibodies.

Results

Stimulation with GM-CSF alone, but not tumor necrosis factor-alpha, was shown to increase the release of IL-1β and cleaved caspase-1 (p20) from human neutrophils. Tofacitinib, which inhibits GM-CSF–induced Janus kinase 2 (Jak2)-mediated signal transduction, completely abrogated GM-CSF–induced IL-1β and caspase-1 (p20) secretion from neutrophils. GM-CSF stimulation also induced pro-IL-1β mRNA expression in neutrophils and induced NLR family pyrin domain-containing 3 (NLRP3) protein expression. Although tofacitinib pretreatment marginally inhibited GM-CSF–induced pro-IL-1β mRNA expression, tofacitinib completely abrogated NLRP3 protein expression in neutrophils.

Conclusions

These results indicate that GM-CSF signaling induces NLRP3 expression and subsequent IL-1β production by affecting neutrophils, which may cause the activation of innate immunity. Therefore, GM-CSF is a key regulator of the NLRP3 inflammasome and IL-1β production by activating innate immune cells. This process can be blocked by tofacitinib, which interferes with JAK/STAT signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 2008;213(9–10):859–70.CrossRefPubMed Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 2008;213(9–10):859–70.CrossRefPubMed
2.
go back to reference Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45(5):963–73.CrossRefPubMed Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45(5):963–73.CrossRefPubMed
3.
go back to reference Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):554–9.CrossRefPubMed Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):554–9.CrossRefPubMed
4.
go back to reference de Vries EG, Willemse PH, Biesma B, Stern AC, Limburg PC, Vellenga E. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991;338(8765):517–8.CrossRefPubMed de Vries EG, Willemse PH, Biesma B, Stern AC, Limburg PC, Vellenga E. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991;338(8765):517–8.CrossRefPubMed
5.
go back to reference Avci AB, Feist E, Burmester GR. Targeting GM-CSF in rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(4 Suppl 98):39–44.PubMed Avci AB, Feist E, Burmester GR. Targeting GM-CSF in rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(4 Suppl 98):39–44.PubMed
6.
go back to reference Shiomi A, Usui T. Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediat Inflamm. 2015;2015:568543.CrossRef Shiomi A, Usui T. Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediat Inflamm. 2015;2015:568543.CrossRef
7.
go back to reference Yang YH, Hamilton JA. Dependence of interleukin-1-induced arthritis on granulocyte-macrophage colony-stimulating factor. Arthritis Rheum. 2001;44(1):111–9.CrossRefPubMed Yang YH, Hamilton JA. Dependence of interleukin-1-induced arthritis on granulocyte-macrophage colony-stimulating factor. Arthritis Rheum. 2001;44(1):111–9.CrossRefPubMed
10.
go back to reference Shaw OM, Steiger S, Liu X, Hamilton JA, Harper JL. Brief report: granulocyte-macrophage colony-stimulating factor drives monosodium urate monohydrate crystal-induced inflammatory macrophage differentiation and NLRP3 inflammasome up-regulation in an in vivo mouse model. Arthritis Rheumatol. 2014;66(9):2423–8.CrossRefPubMed Shaw OM, Steiger S, Liu X, Hamilton JA, Harper JL. Brief report: granulocyte-macrophage colony-stimulating factor drives monosodium urate monohydrate crystal-induced inflammatory macrophage differentiation and NLRP3 inflammasome up-regulation in an in vivo mouse model. Arthritis Rheumatol. 2014;66(9):2423–8.CrossRefPubMed
11.
go back to reference Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, et al. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood. 2009;114(7):1289–98.CrossRefPubMedPubMedCentral Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, et al. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood. 2009;114(7):1289–98.CrossRefPubMedPubMedCentral
12.
go back to reference Watanabe S, Itoh T, Arai K. Roles of JAK kinases in human GM-CSF receptor signal transduction. J Allergy Clin Immunol. 1996;98(6 Pt 2):S183–91.CrossRefPubMed Watanabe S, Itoh T, Arai K. Roles of JAK kinases in human GM-CSF receptor signal transduction. J Allergy Clin Immunol. 1996;98(6 Pt 2):S183–91.CrossRefPubMed
13.
go back to reference Al-Shami A, Mahanna W, Naccache PH. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem. 1998;273(2):1058–63.CrossRefPubMed Al-Shami A, Mahanna W, Naccache PH. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem. 1998;273(2):1058–63.CrossRefPubMed
15.
go back to reference Shamaa OR, Mitra S, Gavrilin MA, Wewers MD. Monocyte Caspase-1 is released in a stable, active high molecular weight complex distinct from the unstable cell lysate-activated Caspase-1. PLoS One. 2015;10:e0142203.CrossRefPubMedPubMedCentral Shamaa OR, Mitra S, Gavrilin MA, Wewers MD. Monocyte Caspase-1 is released in a stable, active high molecular weight complex distinct from the unstable cell lysate-activated Caspase-1. PLoS One. 2015;10:e0142203.CrossRefPubMedPubMedCentral
16.
go back to reference Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, et al. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 2013;12:1247–55.CrossRef Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, et al. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 2013;12:1247–55.CrossRef
17.
go back to reference Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25(5):405–28.CrossRefPubMed Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25(5):405–28.CrossRefPubMed
18.
go back to reference Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 2002;23(4):201–8.CrossRefPubMed Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 2002;23(4):201–8.CrossRefPubMed
19.
go back to reference Croxford AL, Lanzinger M, Hartmann FJ, et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015;43(3):502–14.CrossRefPubMed Croxford AL, Lanzinger M, Hartmann FJ, et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015;43(3):502–14.CrossRefPubMed
20.
go back to reference Reynolds G, Gibbon JR, Pratt AG, Wood MJ, Coady D, Raftery G, et al. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann Rheum Dis. 2016;75(5):899–907.CrossRefPubMed Reynolds G, Gibbon JR, Pratt AG, Wood MJ, Coady D, Raftery G, et al. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann Rheum Dis. 2016;75(5):899–907.CrossRefPubMed
21.
go back to reference Wicks IP, Roberts AW. Targeting GM-CSF in inflammatory diseases. Nat Rev Rheumatol. 2016;12(1):37–48.CrossRefPubMed Wicks IP, Roberts AW. Targeting GM-CSF in inflammatory diseases. Nat Rev Rheumatol. 2016;12(1):37–48.CrossRefPubMed
22.
go back to reference Pillinger MH, Abramson SB. The neutrophil in rheumatoid arthritis. Rheum Dis Clin N Am. 1995;21(3):691–714. Pillinger MH, Abramson SB. The neutrophil in rheumatoid arthritis. Rheum Dis Clin N Am. 1995;21(3):691–714.
23.
go back to reference Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25.CrossRefPubMed Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25.CrossRefPubMed
24.
go back to reference Vijayakrishnan L, Venkataramanan R, Gulati P. Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol Sci. 2011;32(1):25–34.CrossRefPubMed Vijayakrishnan L, Venkataramanan R, Gulati P. Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol Sci. 2011;32(1):25–34.CrossRefPubMed
25.
go back to reference Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem. 2010;53(24):8468–84.CrossRefPubMed Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem. 2010;53(24):8468–84.CrossRefPubMed
26.
go back to reference Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175–87.CrossRefPubMed Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175–87.CrossRefPubMed
28.
go back to reference Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol. 2012;42(3):710–5.CrossRefPubMed Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol. 2012;42(3):710–5.CrossRefPubMed
30.
go back to reference Miossec P. Dynamic interactions between T cells and dendritic cells and their derived cytokines/chemokines in the rheumatoid synovium. Arthritis Res Ther. 2008;10(Suppl 1):S2.CrossRefPubMedPubMedCentral Miossec P. Dynamic interactions between T cells and dendritic cells and their derived cytokines/chemokines in the rheumatoid synovium. Arthritis Res Ther. 2008;10(Suppl 1):S2.CrossRefPubMedPubMedCentral
Metadata
Title
Tofacitinib inhibits granulocyte–macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils
Authors
Makiko Yashiro Furuya
Tomoyuki Asano
Yuya Sumichika
Shuzo Sato
Hiroko Kobayashi
Hiroshi Watanabe
Eiji Suzuki
Hideko Kozuru
Hiroshi Yatsuhashi
Tomohiro Koga
Hiromasa Ohira
Hideharu Sekine
Atsushi Kawakami
Kiyoshi Migita
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2018
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-018-1685-x

Other articles of this Issue 1/2018

Arthritis Research & Therapy 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine