Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Review

An update on the genetic architecture of hyperuricemia and gout

Author: Tony R Merriman

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.
Literature
1.
go back to reference Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82:421–6.CrossRefPubMed Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82:421–6.CrossRefPubMed
3.
go back to reference Robinson P, Horsburgh S. Gout: joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas. 2014;78:245–51.CrossRefPubMed Robinson P, Horsburgh S. Gout: joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas. 2014;78:245–51.CrossRefPubMed
4.
go back to reference Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54.CrossRefPubMedCentralPubMed Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54.CrossRefPubMedCentralPubMed
5.
go back to reference Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.CrossRefPubMedCentralPubMed Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.CrossRefPubMedCentralPubMed
6.
go back to reference Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504.CrossRefPubMedCentralPubMed Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504.CrossRefPubMedCentralPubMed
7.
go back to reference Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3:523–30.CrossRefPubMedCentralPubMed Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3:523–30.CrossRefPubMedCentralPubMed
8.
go back to reference Merriman TR, Choi HK, Dalbeth N. The genetic basis of gout. Rheum Dis Clin North Am. 2014;40:279–90.CrossRefPubMed Merriman TR, Choi HK, Dalbeth N. The genetic basis of gout. Rheum Dis Clin North Am. 2014;40:279–90.CrossRefPubMed
9.
go back to reference Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine. 2011;78:35–40.CrossRefPubMed Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine. 2011;78:35–40.CrossRefPubMed
11.
go back to reference Riches PL, Wright AF, Ralston SH. Recent insights into the pathogenesis of hyperuricaemia and gout. Hum Mol Genet. 2009;18:R177–84.CrossRefPubMed Riches PL, Wright AF, Ralston SH. Recent insights into the pathogenesis of hyperuricaemia and gout. Hum Mol Genet. 2009;18:R177–84.CrossRefPubMed
12.
go back to reference Phipps-Green AJ, Merriman ME, Topless R, Altaf S, Montgomery GW, Franklin C, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2014;Sep 3. pii: annrheumdis-2014-205877. doi:10.1136/annrheumdis-2014-205877. [Epub ahead of print]. Phipps-Green AJ, Merriman ME, Topless R, Altaf S, Montgomery GW, Franklin C, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2014;Sep 3. pii: annrheumdis-2014-205877. doi:10.1136/annrheumdis-2014-205877. [Epub ahead of print].
13.
go back to reference Urano W, Taniguchi A, Inoue E, Sekita C, Ichikawa N, Koseki Y, et al. Effect of genetic polymorphisms on development of gout. J Rheumatol. 2013;40:1374–8.CrossRefPubMed Urano W, Taniguchi A, Inoue E, Sekita C, Ichikawa N, Koseki Y, et al. Effect of genetic polymorphisms on development of gout. J Rheumatol. 2013;40:1374–8.CrossRefPubMed
14.
go back to reference Kimura T, Takahashi M, Yan K, Sakurai H. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLoS One. 2014;9:e84996.CrossRefPubMedCentralPubMed Kimura T, Takahashi M, Yan K, Sakurai H. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLoS One. 2014;9:e84996.CrossRefPubMedCentralPubMed
15.
go back to reference Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;7:e197.CrossRef Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;7:e197.CrossRef
16.
go back to reference Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.CrossRefPubMed Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.CrossRefPubMed
17.
go back to reference Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.CrossRefPubMed Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.CrossRefPubMed
18.
go back to reference Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A. 2009;106:15501–6.CrossRefPubMedCentralPubMed Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A. 2009;106:15501–6.CrossRefPubMedCentralPubMed
19.
go back to reference Witkowska KSK, Yao SY, Ng AM, O’Neill D, Karpinski E, Young JD, et al. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol. 2012;15:F527–39.CrossRef Witkowska KSK, Yao SY, Ng AM, O’Neill D, Karpinski E, Young JD, et al. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol. 2012;15:F527–39.CrossRef
20.
go back to reference DeBosch B, Kluth O, Fujiwara H, Schϋrmann A, Moley KH. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter Slc2a9. Nat Commun. 2014;5:4642.CrossRefPubMedCentralPubMed DeBosch B, Kluth O, Fujiwara H, Schϋrmann A, Moley KH. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter Slc2a9. Nat Commun. 2014;5:4642.CrossRefPubMedCentralPubMed
21.
go back to reference Cheeseman C. Solute carrier family 2, member 9 and uric acid homeostasis. Curr Op Nephrol Hypertens. 2009;18:428–32.CrossRef Cheeseman C. Solute carrier family 2, member 9 and uric acid homeostasis. Curr Op Nephrol Hypertens. 2009;18:428–32.CrossRef
22.
go back to reference Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78:6858–62.CrossRefPubMedCentralPubMed Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78:6858–62.CrossRefPubMedCentralPubMed
23.
go back to reference Johnson RJ, Andrews P, Benner SA, Oliver W, Theodore E. Woodward award. The evolution of obesity: insights from the mid-miocene. Trans Am Clin Climatol Assoc. 2010;121:295–305.PubMedCentralPubMed Johnson RJ, Andrews P, Benner SA, Oliver W, Theodore E. Woodward award. The evolution of obesity: insights from the mid-miocene. Trans Am Clin Climatol Assoc. 2010;121:295–305.PubMedCentralPubMed
24.
go back to reference Itahana Y, Han R, Barbier S, Lei Z, Rozen S, Itahana K. The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene. 2014 May 26 [Epub ahead of print]. Itahana Y, Han R, Barbier S, Lei Z, Rozen S, Itahana K. The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene. 2014 May 26 [Epub ahead of print].
25.
go back to reference Boffetta P, Nordenvall C, Nyrén O, Ye W. A prospective study of gout and cancer. Eur J Cancer Prev. 2009;18:127–32.CrossRefPubMed Boffetta P, Nordenvall C, Nyrén O, Ye W. A prospective study of gout and cancer. Eur J Cancer Prev. 2009;18:127–32.CrossRefPubMed
26.
go back to reference Batt C, Phipps-Green A, Black MA, Cadzow M, Merriman ME, Topless R, et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis. 2014;73:2101–6.CrossRefPubMedCentralPubMed Batt C, Phipps-Green A, Black MA, Cadzow M, Merriman ME, Topless R, et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis. 2014;73:2101–6.CrossRefPubMedCentralPubMed
27.
go back to reference Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59:109–16.CrossRefPubMed Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59:109–16.CrossRefPubMed
28.
go back to reference Dalbeth N, House ME, Gamble GD, Horne A, Pool B, Purvis L, et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann Rheum Dis. 2013;72:1868–73.CrossRefPubMed Dalbeth N, House ME, Gamble GD, Horne A, Pool B, Purvis L, et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann Rheum Dis. 2013;72:1868–73.CrossRefPubMed
29.
go back to reference Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island and Caucasian case–control sample sets. Arthritis Rheum. 2009;60:3485–92.CrossRefPubMed Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island and Caucasian case–control sample sets. Arthritis Rheum. 2009;60:3485–92.CrossRefPubMed
30.
go back to reference Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east asian populations. Nat Genet. 2012;44:904–9.CrossRefPubMed Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east asian populations. Nat Genet. 2012;44:904–9.CrossRefPubMed
31.
go back to reference Scharpf RB, Mireles L, Yang Q, Köttgen A, Ruczinski I, Susztak K, et al. Copy number polymorphisms near slc2a9 are associated with serum uric acid concentrations. BMC Genet. 2014;15:81.CrossRefPubMedCentralPubMed Scharpf RB, Mireles L, Yang Q, Köttgen A, Ruczinski I, Susztak K, et al. Copy number polymorphisms near slc2a9 are associated with serum uric acid concentrations. BMC Genet. 2014;15:81.CrossRefPubMedCentralPubMed
32.
go back to reference McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J, et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis. 2008;67:409–13.CrossRefPubMed McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J, et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis. 2008;67:409–13.CrossRefPubMed
33.
go back to reference McKinney C, Merriman TR. Meta-analysis confirms a role for deletion in FCGR3B in autoimmune phenotypes. Hum Mol Genet. 2012;21:2370–6.CrossRefPubMed McKinney C, Merriman TR. Meta-analysis confirms a role for deletion in FCGR3B in autoimmune phenotypes. Hum Mol Genet. 2012;21:2370–6.CrossRefPubMed
34.
go back to reference Wei W-H, Guo Y, Kindt AS, Merriman TR, Semple CA, Wang K, et al. Abundant local interactions in the 4p16. 1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid. Hum Mol Genet. 2014;23:5061–8.CrossRefPubMedCentralPubMed Wei W-H, Guo Y, Kindt AS, Merriman TR, Semple CA, Wang K, et al. Abundant local interactions in the 4p16. 1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid. Hum Mol Genet. 2014;23:5061–8.CrossRefPubMedCentralPubMed
35.
go back to reference Dalbeth N, Merriman T. Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout. Rheumatol. 2009;48:222–6.CrossRef Dalbeth N, Merriman T. Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout. Rheumatol. 2009;48:222–6.CrossRef
36.
go back to reference Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106:10338–42.CrossRefPubMedCentralPubMed Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106:10338–42.CrossRefPubMedCentralPubMed
37.
go back to reference Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, et al. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A. 2013;110:5223–8.CrossRefPubMedCentralPubMed Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, et al. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A. 2013;110:5223–8.CrossRefPubMedCentralPubMed
38.
go back to reference Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.CrossRefPubMedCentralPubMed Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.CrossRefPubMedCentralPubMed
39.
go back to reference Dalbeth N, House ME, Gamble GD, Pool B, Horne A, Purvis L, et al. Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge. Arthritis Res Ther. 2014;16:R34.CrossRefPubMedCentralPubMed Dalbeth N, House ME, Gamble GD, Pool B, Horne A, Purvis L, et al. Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge. Arthritis Res Ther. 2014;16:R34.CrossRefPubMedCentralPubMed
40.
go back to reference Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P, et al. Identifying relationships among genomic disease regions: Predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009;5:e1000534.CrossRefPubMedCentralPubMed Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P, et al. Identifying relationships among genomic disease regions: Predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009;5:e1000534.CrossRefPubMedCentralPubMed
41.
go back to reference Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.CrossRefPubMedCentralPubMed Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.CrossRefPubMedCentralPubMed
42.
go back to reference Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–5.CrossRefPubMedCentralPubMed Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–5.CrossRefPubMedCentralPubMed
43.
go back to reference Gosling A, Matisoo-Smith E, Merriman TR. Hyperuricaemia in the Pacific: why the elevated serum urate levels? Rheumatol Int. 2014;34:743–57.CrossRefPubMed Gosling A, Matisoo-Smith E, Merriman TR. Hyperuricaemia in the Pacific: why the elevated serum urate levels? Rheumatol Int. 2014;34:743–57.CrossRefPubMed
44.
go back to reference Winnard D, Wright C, Taylor WJ, Jackson G, Te Karu L, Gow PJ, et al. National prevalence of gout derived from administrative data in New Zealand. Rheumatology. 2012;51:901–9.CrossRefPubMed Winnard D, Wright C, Taylor WJ, Jackson G, Te Karu L, Gow PJ, et al. National prevalence of gout derived from administrative data in New Zealand. Rheumatology. 2012;51:901–9.CrossRefPubMed
45.
go back to reference Flynn T, Phipps-Green A, Hollis-Moffatt JE, Merriman ME, Topless R, Montgomery GW, et al. Association analysis of the SLC22A11 (OAT4) and SLC22A11 (URAT1) urate transporter locus with gout in New Zealand case–control sample sets reveals multiple ancestral-specific effects. Arthritis Res Ther. 2013;15:R220.CrossRefPubMedCentralPubMed Flynn T, Phipps-Green A, Hollis-Moffatt JE, Merriman ME, Topless R, Montgomery GW, et al. Association analysis of the SLC22A11 (OAT4) and SLC22A11 (URAT1) urate transporter locus with gout in New Zealand case–control sample sets reveals multiple ancestral-specific effects. Arthritis Res Ther. 2013;15:R220.CrossRefPubMedCentralPubMed
46.
go back to reference Merriman TR. Population heterogeneity in the genetic control of serum urate. Semin Nephrol. 2011;31:420–5.CrossRefPubMed Merriman TR. Population heterogeneity in the genetic control of serum urate. Semin Nephrol. 2011;31:420–5.CrossRefPubMed
47.
go back to reference Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 2014;85:344–51.CrossRefPubMed Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 2014;85:344–51.CrossRefPubMed
48.
go back to reference McKeigue PMCH, Wild S, Vitart V, Hayward C, Rudan I, Wright AF, et al. Bayesian methods for instrumental variable analysis with genetic instruments (‘mendelian randomization’): example with urate transporter slc2a9 as an instrumental variable for effect of urate levels on metabolic syndrome. Int J Epidemiol. 2010;39:907–18.CrossRefPubMedCentralPubMed McKeigue PMCH, Wild S, Vitart V, Hayward C, Rudan I, Wright AF, et al. Bayesian methods for instrumental variable analysis with genetic instruments (‘mendelian randomization’): example with urate transporter slc2a9 as an instrumental variable for effect of urate levels on metabolic syndrome. Int J Epidemiol. 2010;39:907–18.CrossRefPubMedCentralPubMed
49.
go back to reference Palmer TM, Nordestgaard BG, Benn M, Tybjærg-Hansen A, Smith GD, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomization analysis of two large cohorts. BMJ. 2013;347:f4262.CrossRefPubMedCentralPubMed Palmer TM, Nordestgaard BG, Benn M, Tybjærg-Hansen A, Smith GD, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomization analysis of two large cohorts. BMJ. 2013;347:f4262.CrossRefPubMedCentralPubMed
50.
go back to reference Rasheed H, Hughes K, Flynn TJ, Merriman TR. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ Cardiovasc Genet. 2014;7:830–7.CrossRefPubMed Rasheed H, Hughes K, Flynn TJ, Merriman TR. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ Cardiovasc Genet. 2014;7:830–7.CrossRefPubMed
51.
go back to reference Krishnan E, Lessov-Schlaggar CN, Krasnow RE, Swan GE. Nature versus nurture in gout: a twin study. Am J Med. 2012;125:499–504.CrossRefPubMed Krishnan E, Lessov-Schlaggar CN, Krasnow RE, Swan GE. Nature versus nurture in gout: a twin study. Am J Med. 2012;125:499–504.CrossRefPubMed
52.
go back to reference Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.CrossRefPubMedCentralPubMed Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.CrossRefPubMedCentralPubMed
53.
go back to reference Rasheed H, Phipps-Green A, Topless R, Hollis-Moffatt JE, Hindmarsh JH, Franklin C, et al. Association of the lipoprotein receptor-related protein 2 gene with gout and non-additive interaction with alcohol consumption. Arthritis Res Ther. 2013;15:R177.CrossRefPubMedCentralPubMed Rasheed H, Phipps-Green A, Topless R, Hollis-Moffatt JE, Hindmarsh JH, Franklin C, et al. Association of the lipoprotein receptor-related protein 2 gene with gout and non-additive interaction with alcohol consumption. Arthritis Res Ther. 2013;15:R177.CrossRefPubMedCentralPubMed
54.
go back to reference McAdams-DeMarco MA, Maynard JW, Baer AN, Kao LW, Köttgen A, Coresh J. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis. 2013;72:701–6.CrossRefPubMed McAdams-DeMarco MA, Maynard JW, Baer AN, Kao LW, Köttgen A, Coresh J. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis. 2013;72:701–6.CrossRefPubMed
55.
go back to reference Wang J, Liu S, Wang B, Miao Z, Han L, Chu N, et al. Association between gout and polymorphisms in GCKR in male Han Chinese. Hum Genet. 2012;131:1261–5.CrossRefPubMed Wang J, Liu S, Wang B, Miao Z, Han L, Chu N, et al. Association between gout and polymorphisms in GCKR in male Han Chinese. Hum Genet. 2012;131:1261–5.CrossRefPubMed
56.
go back to reference Qing YF, Zhou JG, Zhang QB, Wang DS, Li M, Yang QB, et al. Association of TLR4 gene rs2149356 polymorphism with primary gouty arthritis in a case–control study. PLoS One. 2013;8:e64845.CrossRefPubMedCentralPubMed Qing YF, Zhou JG, Zhang QB, Wang DS, Li M, Yang QB, et al. Association of TLR4 gene rs2149356 polymorphism with primary gouty arthritis in a case–control study. PLoS One. 2013;8:e64845.CrossRefPubMedCentralPubMed
57.
go back to reference Merriman T, Topless R, Day R, Kannangara D, Williams K, Bradbury L, et al. Association of the toll-like receptor 4 (TLR4) gene with gout. Ann Rheum Dis. 2014;73, THU0493. Merriman T, Topless R, Day R, Kannangara D, Williams K, Bradbury L, et al. Association of the toll-like receptor 4 (TLR4) gene with gout. Ann Rheum Dis. 2014;73, THU0493.
58.
go back to reference Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, Jones GT, van Rij A, Gow PJ, et al. The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther. 2012;14:R92.CrossRefPubMedCentralPubMed Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, Jones GT, van Rij A, Gow PJ, et al. The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther. 2012;14:R92.CrossRefPubMedCentralPubMed
59.
go back to reference Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;6:1232–4.CrossRef Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;6:1232–4.CrossRef
60.
go back to reference Bonomo JA, Guan M, Ng MC, Palmer ND, Hicks PJ, Keaton JM, et al. The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease. Hum Mol Genet. 2014;23:6441–7.CrossRefPubMed Bonomo JA, Guan M, Ng MC, Palmer ND, Hicks PJ, Keaton JM, et al. The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease. Hum Mol Genet. 2014;23:6441–7.CrossRefPubMed
61.
go back to reference Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, et al. Gene-centric meta-analysis in 87,736 individuals of european ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94:349–60.CrossRefPubMedCentralPubMed Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, et al. Gene-centric meta-analysis in 87,736 individuals of european ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94:349–60.CrossRefPubMedCentralPubMed
62.
go back to reference Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.CrossRefPubMedCentralPubMed Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.CrossRefPubMedCentralPubMed
63.
go back to reference Kraja AT, Chasman DI, North KE, Reiner AP, Yanek LR, Kilpeläinen TO, et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab. 2014;112:317–38.CrossRefPubMed Kraja AT, Chasman DI, North KE, Reiner AP, Yanek LR, Kilpeläinen TO, et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab. 2014;112:317–38.CrossRefPubMed
Metadata
Title
An update on the genetic architecture of hyperuricemia and gout
Author
Tony R Merriman
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0609-2

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine