Skip to main content
Top
Published in: Trials 1/2023

Open Access 01-12-2023 | Commentary

Minimum important difference is minimally important in sample size calculations

Author: Hubert Wong

Published in: Trials | Issue 1/2023

Login to get access

Abstract

Performing a sample size calculation for a randomized controlled trial requires specifying an assumed benefit (that is, the mean improvement in outcomes due to the intervention) and a target power. There is a widespread belief that judgments about the minimum important difference should be used when setting the assumed benefit and thus the sample size. This belief is misguided — when the purpose of the trial is to test the null hypothesis of no treatment benefit, the only role that the minimum important difference should be given is in determining whether the sample size should be zero, that is, whether the trial should be conducted at all.
The true power of the trial depends on the true benefit, so the calculated sample size will result in a true power close to the target power used in the calculation only if the assumed benefit is close to the true benefit. Hence, the assumed benefit should be set to a value that is considered a realistic estimate of the true benefit. If a trial designed using a realistic value for the assumed benefit is unlikely to demonstrate that a meaningful benefit exists, the trial should not be conducted. Any attempt to reconcile discrepancies between the realistic estimate of benefit and the minimum important difference when setting the assumed benefit merely conflates a valid sample size calculation with one based on faulty inputs and leads to a true power that fails to match the target power.
When calculating sample size, trial designers should focus efforts on determining reasonable estimates of the true benefit, not on what magnitude of benefit is judged important.
Literature
1.
go back to reference Cook JA, Julious SA, Sones W, et al. DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. BMJ. 2018;363:k3750.CrossRef Cook JA, Julious SA, Sones W, et al. DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. BMJ. 2018;363:k3750.CrossRef
2.
go back to reference Cook JA, Hislop J, Adewuyi TE, et al. Assessing methods to specify the target difference for a randomised controlled trial: DELTA (Difference ELicitation in TriAls) review. Health Technol Assess. 2014;18:v–vi 1-175.CrossRef Cook JA, Hislop J, Adewuyi TE, et al. Assessing methods to specify the target difference for a randomised controlled trial: DELTA (Difference ELicitation in TriAls) review. Health Technol Assess. 2014;18:v–vi 1-175.CrossRef
3.
go back to reference Fayers PM, Cuschieri A, Fielding J, Craven J, Uscinska B, Freedman LS. Sample size calculation for clinical trials: the impact of clinician beliefs. Br J Cancer. 2000;82:213–9.CrossRef Fayers PM, Cuschieri A, Fielding J, Craven J, Uscinska B, Freedman LS. Sample size calculation for clinical trials: the impact of clinician beliefs. Br J Cancer. 2000;82:213–9.CrossRef
4.
go back to reference Chuang-Stein C, Kirby S, Hirsch I, Atkinson G. The role of the minimum clinically important difference and its impact on designing a trial. Pharm Stat. 2011;10(3):250–6.CrossRef Chuang-Stein C, Kirby S, Hirsch I, Atkinson G. The role of the minimum clinically important difference and its impact on designing a trial. Pharm Stat. 2011;10(3):250–6.CrossRef
5.
go back to reference Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006;63(5):484–9.CrossRef Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006;63(5):484–9.CrossRef
6.
go back to reference Westlund E, Stuart EA. The nonuse, misuse and proper use of pilot studies in experimental evaluation research. Am J Eval. 2017;38:246–61.CrossRef Westlund E, Stuart EA. The nonuse, misuse and proper use of pilot studies in experimental evaluation research. Am J Eval. 2017;38:246–61.CrossRef
7.
go back to reference Chalmers I, Matthews R. What are the implications of optimism bias in clinical research? Lancet. 2006;367(9509):449–50.CrossRef Chalmers I, Matthews R. What are the implications of optimism bias in clinical research? Lancet. 2006;367(9509):449–50.CrossRef
Metadata
Title
Minimum important difference is minimally important in sample size calculations
Author
Hubert Wong
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Trials / Issue 1/2023
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-023-07092-8

Other articles of this Issue 1/2023

Trials 1/2023 Go to the issue