Skip to main content
Top
Published in: Trials 1/2020

Open Access 01-12-2020 | Opioids | Research

Addressing identification bias in the design and analysis of cluster-randomized pragmatic trials: a case study

Authors: Jennifer F. Bobb, Hongxiang Qiu, Abigail G. Matthews, Jennifer McCormack, Katharine A. Bradley

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Pragmatic trials provide the opportunity to study the effectiveness of health interventions to improve care in real-world settings. However, use of open-cohort designs with patients becoming eligible after randomization and reliance on electronic health records (EHRs) to identify participants may lead to a form of selection bias referred to as identification bias. This bias can occur when individuals identified as a result of the treatment group assignment are included in analyses.

Methods

To demonstrate the importance of identification bias and how it can be addressed, we consider a motivating case study, the PRimary care Opioid Use Disorders treatment (PROUD) Trial. PROUD is an ongoing pragmatic, cluster-randomized implementation trial in six health systems to evaluate a program for increasing medication treatment of opioid use disorders (OUDs). A main study objective is to evaluate whether the PROUD intervention decreases acute care utilization among patients with OUD (effectiveness aim). Identification bias is a particular concern, because OUD is underdiagnosed in the EHR at baseline, and because the intervention is expected to increase OUD diagnosis among current patients and attract new patients with OUD to the intervention site. We propose a framework for addressing this source of bias in the statistical design and analysis.

Results

The statistical design sought to balance the competing goals of fully capturing intervention effects and mitigating identification bias, while maximizing power. For the primary analysis of the effectiveness aim, identification bias was avoided by defining the study sample using pre-randomization data (pre-trial modeling demonstrated that the optimal approach was to use individuals with a prior OUD diagnosis). To expand generalizability of study findings, secondary analyses were planned that also included patients newly diagnosed post-randomization, with analytic methods to account for identification bias.

Conclusion

As more studies seek to leverage existing data sources, such as EHRs, to make clinical trials more affordable and generalizable and to apply novel open-cohort study designs, the potential for identification bias is likely to become increasingly common. This case study highlights how this bias can be addressed in the statistical study design and analysis.

Trial registration

ClinicalTrials.​gov, NCT03407638. Registered on 23 January 2018.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624–32.CrossRef Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624–32.CrossRef
2.
go back to reference Zwarenstein M, Oxman A. Pragmatic Trials in Health Care Systems. Why are so few randomized trials useful, and what can we do about it? J Clin Epidemiol. 2006;59(11):1125–6.CrossRef Zwarenstein M, Oxman A. Pragmatic Trials in Health Care Systems. Why are so few randomized trials useful, and what can we do about it? J Clin Epidemiol. 2006;59(11):1125–6.CrossRef
3.
go back to reference Weiss NS, Koepsell TD, Psaty BM. Generalizability of the results of randomized trials. Arch Intern Med. 2008;168(2):133–5.CrossRef Weiss NS, Koepsell TD, Psaty BM. Generalizability of the results of randomized trials. Arch Intern Med. 2008;168(2):133–5.CrossRef
4.
go back to reference Chalkidou K, Tunis S, Whicher D, Fowler R, Zwarenstein M. The role for pragmatic randomized controlled trials (pRCTs) in comparative effectiveness research. Clin Trials. 2012;9(4):436–46.CrossRef Chalkidou K, Tunis S, Whicher D, Fowler R, Zwarenstein M. The role for pragmatic randomized controlled trials (pRCTs) in comparative effectiveness research. Clin Trials. 2012;9(4):436–46.CrossRef
5.
go back to reference Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62(5):464–75.CrossRef Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62(5):464–75.CrossRef
6.
go back to reference Califf RM, Platt R. Embedding cardiovascular research into practice. JAMA. 2013;310(19):2037–8.CrossRef Califf RM, Platt R. Embedding cardiovascular research into practice. JAMA. 2013;310(19):2037–8.CrossRef
8.
go back to reference Cook AJ, Delong E, Murray DM, Vollmer WM, Heagerty PJ. Statistical lessons learned for designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory Biostatistics and Design Core. Clin Trials. 2016;13(5):504–12.CrossRef Cook AJ, Delong E, Murray DM, Vollmer WM, Heagerty PJ. Statistical lessons learned for designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory Biostatistics and Design Core. Clin Trials. 2016;13(5):504–12.CrossRef
9.
go back to reference Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. Am J Public Health. 2004;94(3):423–32.CrossRef Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. Am J Public Health. 2004;94(3):423–32.CrossRef
10.
go back to reference Donner A, Klar N. Design and analysis of cluster randomization trials in health research, vol. 178. London: Hodder Education Publishers; 2000. Donner A, Klar N. Design and analysis of cluster randomization trials in health research, vol. 178. London: Hodder Education Publishers; 2000.
11.
go back to reference Roberts C, Torgerson DJ. Understanding controlled trials: baseline imbalance in randomised controlled trials. BMJ. 1999;319(7203):185.CrossRef Roberts C, Torgerson DJ. Understanding controlled trials: baseline imbalance in randomised controlled trials. BMJ. 1999;319(7203):185.CrossRef
12.
go back to reference Kahan BC, Forbes G, Ali Y, Jairath V, Bremner S, Harhay MO, et al. Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study. Trials. 2016;17(1):438.CrossRef Kahan BC, Forbes G, Ali Y, Jairath V, Bremner S, Harhay MO, et al. Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study. Trials. 2016;17(1):438.CrossRef
13.
go back to reference Shortreed SM, Cook AJ, Coley RY, Bobb JF, Nelson JC. Challenges and opportunities for using big clinical data to advance medical science. Am J Epidemiol. 2019;188(5):851–61.CrossRef Shortreed SM, Cook AJ, Coley RY, Bobb JF, Nelson JC. Challenges and opportunities for using big clinical data to advance medical science. Am J Epidemiol. 2019;188(5):851–61.CrossRef
14.
go back to reference Hemming K, Taljaard M, McKenzie JE, Hooper R, Copas A, Thompson JA, et al. Reporting of the CONSORT extension for steppedwedge cluster randomised trials: Extension of the CONSORT 2010 statement with explanation and elaboration. BMJ. 2018;363:k1614.CrossRef Hemming K, Taljaard M, McKenzie JE, Hooper R, Copas A, Thompson JA, et al. Reporting of the CONSORT extension for steppedwedge cluster randomised trials: Extension of the CONSORT 2010 statement with explanation and elaboration. BMJ. 2018;363:k1614.CrossRef
15.
go back to reference Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR. Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials. 2015 Dec;16(1):352.CrossRef Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR. Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials. 2015 Dec;16(1):352.CrossRef
16.
go back to reference Hooper R, Copas A. Stepped wedge trials with continuous recruitment require new ways of thinking. J Clin Epidemiol. 2019;116:161–6.CrossRef Hooper R, Copas A. Stepped wedge trials with continuous recruitment require new ways of thinking. J Clin Epidemiol. 2019;116:161–6.CrossRef
18.
go back to reference Eldridge S, Kerry S, Torgerson DJ. Bias in identifying and recruiting participants in cluster randomised trials: what can be done? BMJ. 2009;339:b4006.CrossRef Eldridge S, Kerry S, Torgerson DJ. Bias in identifying and recruiting participants in cluster randomised trials: what can be done? BMJ. 2009;339:b4006.CrossRef
20.
go back to reference Caille A, Kerry S, Tavernier E, Leyrat C, Eldridge S, Giraudeau B. Timeline cluster: a graphical tool to identify risk of bias in cluster randomised trials. BMJ. 2016;354:i4291.CrossRef Caille A, Kerry S, Tavernier E, Leyrat C, Eldridge S, Giraudeau B. Timeline cluster: a graphical tool to identify risk of bias in cluster randomised trials. BMJ. 2016;354:i4291.CrossRef
21.
go back to reference Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–26.CrossRef Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–26.CrossRef
24.
go back to reference Dunlap B, Cifu AS. Clinical management of opioid use disorder. JAMA. 2016;316(3):338–9.CrossRef Dunlap B, Cifu AS. Clinical management of opioid use disorder. JAMA. 2016;316(3):338–9.CrossRef
25.
go back to reference Krupitsky E, Nunes EV, Ling W, Illeperuma A, Gastfriend DR, Silverman BL. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011;377(9776):1506–13.CrossRef Krupitsky E, Nunes EV, Ling W, Illeperuma A, Gastfriend DR, Silverman BL. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011;377(9776):1506–13.CrossRef
26.
go back to reference Wu LT, Zhu H, Swartz MS. Treatment utilization among persons with opioid use disorder in the United States. Drug Alcohol Depend. 2016;169:117–27.CrossRef Wu LT, Zhu H, Swartz MS. Treatment utilization among persons with opioid use disorder in the United States. Drug Alcohol Depend. 2016;169:117–27.CrossRef
27.
go back to reference Korthuis PT, McCarty D, Weimer M, Bougatsos C, Blazina I, Zakher B, et al. Primary care-based models for the treatment of opioid use disorder: A scoping review. Ann Intern Med. 2017;166(4):268–78.CrossRef Korthuis PT, McCarty D, Weimer M, Bougatsos C, Blazina I, Zakher B, et al. Primary care-based models for the treatment of opioid use disorder: A scoping review. Ann Intern Med. 2017;166(4):268–78.CrossRef
28.
go back to reference Alford DP, LaBelle CT, Kretsch N, Bergeron A, Winter M, Botticelli M, et al. Collaborative care of opioid-addicted patients in primary care using buprenorphine: five-year experience. Arch Intern Med. 2011;171(5):425–31.CrossRef Alford DP, LaBelle CT, Kretsch N, Bergeron A, Winter M, Botticelli M, et al. Collaborative care of opioid-addicted patients in primary care using buprenorphine: five-year experience. Arch Intern Med. 2011;171(5):425–31.CrossRef
29.
go back to reference LaBelle CT, Han SC, Bergeron A, Samet JH. Office-Based Opioid Treatment with Buprenorphine (OBOT-B): Statewide implementation of the Massachusetts collaborative care model in community health centers. J Subst Abus Treat. 2016;60:6–13.CrossRef LaBelle CT, Han SC, Bergeron A, Samet JH. Office-Based Opioid Treatment with Buprenorphine (OBOT-B): Statewide implementation of the Massachusetts collaborative care model in community health centers. J Subst Abus Treat. 2016;60:6–13.CrossRef
31.
go back to reference NIDA CTN Protocol 0074. PRimary care Opioid Use Disorders Treatment (PROUD) Trial. Lead Investigator: Katharine Bradley, MD, MPH. March 27, 2018. Version 3.0. Current version available upon request from the corresponding author. NIDA CTN Protocol 0074. PRimary care Opioid Use Disorders Treatment (PROUD) Trial. Lead Investigator: Katharine Bradley, MD, MPH. March 27, 2018. Version 3.0. Current version available upon request from the corresponding author.
32.
go back to reference Jones CM, Campopiano M, Baldwin G, McCance-Katz E. National and state treatment need and capacity for opioid agonist medication-assisted treatment. Am J Public Health. 2015;105(8):e55–63.CrossRef Jones CM, Campopiano M, Baldwin G, McCance-Katz E. National and state treatment need and capacity for opioid agonist medication-assisted treatment. Am J Public Health. 2015;105(8):e55–63.CrossRef
33.
go back to reference Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, et al. Nonmedical prescription opioid use and DSM-5 nonmedical prescription opioid use disorder in the United States. J Clin Psychiatry. 2016;77(6):772–80.CrossRef Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, et al. Nonmedical prescription opioid use and DSM-5 nonmedical prescription opioid use disorder in the United States. J Clin Psychiatry. 2016;77(6):772–80.CrossRef
34.
go back to reference McNeely J, Wu LT, Subramaniam G, Sharma G, Cathers LA, Svikis D, et al. Performance of the tobacco, alcohol, prescription nedication, and other substance use (TAPS) tool for substance use screening in primary care patients. Ann Intern Med. 2016;165(10):690–9.CrossRef McNeely J, Wu LT, Subramaniam G, Sharma G, Cathers LA, Svikis D, et al. Performance of the tobacco, alcohol, prescription nedication, and other substance use (TAPS) tool for substance use screening in primary care patients. Ann Intern Med. 2016;165(10):690–9.CrossRef
35.
go back to reference Boscarino JA, Rukstalis M, Hoffman SN, Han JJ, Erlich PM, Gerhard GS, et al. Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction. 2010;105(10):1776–82.CrossRef Boscarino JA, Rukstalis M, Hoffman SN, Han JJ, Erlich PM, Gerhard GS, et al. Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction. 2010;105(10):1776–82.CrossRef
36.
go back to reference Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.CrossRef Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.CrossRef
37.
go back to reference Signorini DF. Sample size for Poisson regression. Biometrika. 1991;78(2):446–50.CrossRef Signorini DF. Sample size for Poisson regression. Biometrika. 1991;78(2):446–50.CrossRef
38.
go back to reference Amatya A, Bhaumik D, Gibbons RD. Sample size determination for clustered count data. Stat Med. 2013;32(24):4162–79.CrossRef Amatya A, Bhaumik D, Gibbons RD. Sample size determination for clustered count data. Stat Med. 2013;32(24):4162–79.CrossRef
39.
go back to reference Kaiser Permanente, World Health Information Science Consultants. An observational study to develop algorithms for identifying opioid abuse and addiction based on admin claims data: NIH. U.S. National Library of Medicine; Not Yet Published. updated Apr 28, 2017. https://clinicaltrials.gov/ct2/show/NCT02667262. Accessed 11 June 2019. Kaiser Permanente, World Health Information Science Consultants. An observational study to develop algorithms for identifying opioid abuse and addiction based on admin claims data: NIH. U.S. National Library of Medicine; Not Yet Published. updated Apr 28, 2017. https://​clinicaltrials.​gov/​ct2/​show/​NCT02667262. Accessed 11 June 2019.
40.
go back to reference Glass JE, Bobb JF, Lee AK, Richards JE, Lapham GT, Ludman E, et al. Study protocol: a cluster-randomized trial implementing Sustained Patient-centered Alcohol-related Care (SPARC trial). Implement Sci. 2018;13(1):108.CrossRef Glass JE, Bobb JF, Lee AK, Richards JE, Lapham GT, Ludman E, et al. Study protocol: a cluster-randomized trial implementing Sustained Patient-centered Alcohol-related Care (SPARC trial). Implement Sci. 2018;13(1):108.CrossRef
41.
go back to reference Coronado GD, Petrik AF, Vollmer WM, Taplin SH, Keast EM, Fields S, Green BB. Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1174–81.CrossRef Coronado GD, Petrik AF, Vollmer WM, Taplin SH, Keast EM, Fields S, Green BB. Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1174–81.CrossRef
42.
go back to reference Vollmer WM, Green BB, Coronado GD. Analytic Challenges Arising from the STOP CRC Trial: Pragmatic Solutions for Pragmatic Problems. EGEMs (Wash DC). 2015;3(1):1200. Vollmer WM, Green BB, Coronado GD. Analytic Challenges Arising from the STOP CRC Trial: Pragmatic Solutions for Pragmatic Problems. EGEMs (Wash DC). 2015;3(1):1200.
43.
go back to reference Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics. 2002;58(1):21–9.CrossRef Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics. 2002;58(1):21–9.CrossRef
44.
go back to reference Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91(434):444–55.CrossRef Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91(434):444–55.CrossRef
45.
go back to reference Ross TR, Ng D, Brown JS, Pardee R, Hornbrook MC, Hart G, et al. The HMO research network virtual data warehouse: A public data model to support collaboration. EGEMS (Wash DC). 2014;2(1):1049. Ross TR, Ng D, Brown JS, Pardee R, Hornbrook MC, Hart G, et al. The HMO research network virtual data warehouse: A public data model to support collaboration. EGEMS (Wash DC). 2014;2(1):1049.
46.
go back to reference Bradley KA, Chavez LJ, Lapham GT, Williams EC, Achtmeyer CE, Rubinsky AD, et al. When quality indicators undermine quality: bias in a quality indicator of follow-up for alcohol misuse. Psychiatr Serv. 2013;64(10):1018–25.CrossRef Bradley KA, Chavez LJ, Lapham GT, Williams EC, Achtmeyer CE, Rubinsky AD, et al. When quality indicators undermine quality: bias in a quality indicator of follow-up for alcohol misuse. Psychiatr Serv. 2013;64(10):1018–25.CrossRef
47.
go back to reference Bobb JF, Lee AK, Lapham GT, Oliver M, Ludman E, Achtmeyer C, et al. Evaluation of a pilot implementation to integrate alcohol-related care within primary care. Int J Environ Res Public Health. 2017;14(9):E1030.CrossRef Bobb JF, Lee AK, Lapham GT, Oliver M, Ludman E, Achtmeyer C, et al. Evaluation of a pilot implementation to integrate alcohol-related care within primary care. Int J Environ Res Public Health. 2017;14(9):E1030.CrossRef
Metadata
Title
Addressing identification bias in the design and analysis of cluster-randomized pragmatic trials: a case study
Authors
Jennifer F. Bobb
Hongxiang Qiu
Abigail G. Matthews
Jennifer McCormack
Katharine A. Bradley
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-4148-z

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue