Skip to main content
Top
Published in: Trials 1/2020

Open Access 01-12-2020 | Multiple Sclerosis | Study protocol

The effect of a telerehabilitation virtual reality intervention on functional upper limb activities in people with multiple sclerosis: a study protocol for the TEAMS pilot randomized controlled trial

Authors: Alon Kalron, Anat Achiron, Massimiliano Pau, Eleonora Cocco

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Approximately 60% of people with multiple sclerosis (PwMS) suffer from upper limb dysfunction. Our primary goal is to implement a single-blind, randomized control trial (RCT) designed to compare the effectiveness of an 8-week home-based telerehab virtual reality (VR) program with conventional therapy in PwMS with manual dexterity difficulties. Secondary aims include (a) evaluating the impact of the programs on quality of life after the intervention and a follow-up 1 month later and (b) evaluating the impact of the programs on adherence and satisfaction.

Methods

Twenty-four PwMS will be recruited to the study which will be conducted at two established MS centers: (1) The Regional Center for Diagnosis and Treatment of Multiple Sclerosis, Binaghi Hospital, Cagliari, Italy, and (2) The Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Participants will complete a total of three assessments focusing on upper limb functions. Both groups will receive 16 training sessions focusing on functional upper limb activities. The home-based telerehab VR intervention will comprise a custom-made software program running on a private computer or laptop. PwMS will perform several activities of daily living (ADL) functions associated with self-care, dressing, and meal preparation. Conventional therapy will focus on task-related upper-limb treatments while in a sitting position, indicative of the standard care in MS. Following 8 weeks of training, participants will complete a further outcome assessment. The same tests will be conducted 1 month (as a follow-up) after completion of the intervention.

Discussion

The outcomes of this study have tremendous potential to improve the quality of evidence and informed decisions of functional upper limb activities in PwMS. If comparable results are found between the treatments in improving upper limb outcomes, this would suggest that PwMS can choose the program that best meets their personal needs, e.g., financial concerns, transportation, or accessibility issues. Secondly, this information can be used by healthcare providers and medical professionals in developing upper limb exercise programs that will most likely succeed in PwMS.

Trial registration

ClinicalTrials.gov NCT04032431. Registered on 19 July 2019.
Literature
1.
go back to reference Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83:1022–4.PubMedPubMedCentral Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83:1022–4.PubMedPubMedCentral
2.
go back to reference Lamers I, Maris A, Severijns D, Dielkens W, Geurts S, Van Wijmeersch B, et al. Upper limb rehabilitation in people with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2016;30(8):773–93.PubMed Lamers I, Maris A, Severijns D, Dielkens W, Geurts S, Van Wijmeersch B, et al. Upper limb rehabilitation in people with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2016;30(8):773–93.PubMed
3.
go back to reference Holper L, Coenen M, Weise A, Stucki G, Cieza A, Kesselring J. Characterization of functioning in multiple sclerosis using the ICF. J Neurol. 2010;257:103–13.PubMed Holper L, Coenen M, Weise A, Stucki G, Cieza A, Kesselring J. Characterization of functioning in multiple sclerosis using the ICF. J Neurol. 2010;257:103–13.PubMed
4.
5.
go back to reference Yozbatiran N, Baskurt F, Baskurt Z, Ozakbas S, Idiman E. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. J Neurol Sci. 2006;246:117–22.PubMed Yozbatiran N, Baskurt F, Baskurt Z, Ozakbas S, Idiman E. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. J Neurol Sci. 2006;246:117–22.PubMed
6.
go back to reference Lamers I, Cattaneo D, Chen CC, Bertoni R, Van Wijmeersch B, Feys P. Associations of upper limb disability measures on different levels of the International Classification of Functioning, Disability and Health in people with multiple sclerosis. Phys Ther. 2015;95:65–75.PubMed Lamers I, Cattaneo D, Chen CC, Bertoni R, Van Wijmeersch B, Feys P. Associations of upper limb disability measures on different levels of the International Classification of Functioning, Disability and Health in people with multiple sclerosis. Phys Ther. 2015;95:65–75.PubMed
7.
go back to reference Kierkegaard M, Einarsson U, Gottberg K, von Koch L, Holmqvist LW. The relationship between walking, manual dexterity, cognition and activity/participation in persons with multiple sclerosis. Mult Scler. 2012;18(5):639–46.PubMed Kierkegaard M, Einarsson U, Gottberg K, von Koch L, Holmqvist LW. The relationship between walking, manual dexterity, cognition and activity/participation in persons with multiple sclerosis. Mult Scler. 2012;18(5):639–46.PubMed
8.
go back to reference Bertoni R, Lamers I, Chen CC, Feys P, Cattaneo D. Unilateral and bilateral upper limb dysfunction at body functions, activity and participation levels in people with multiple sclerosis. Mult Scler. 2015;21:1566–74.PubMed Bertoni R, Lamers I, Chen CC, Feys P, Cattaneo D. Unilateral and bilateral upper limb dysfunction at body functions, activity and participation levels in people with multiple sclerosis. Mult Scler. 2015;21:1566–74.PubMed
9.
go back to reference Diederich F, König HH, Mietzner C, Brettschneider C. Costs of informal nursing care for patients with neurologic disorders: a systematic review. Neurology. 2018;90(1):28–34.PubMed Diederich F, König HH, Mietzner C, Brettschneider C. Costs of informal nursing care for patients with neurologic disorders: a systematic review. Neurology. 2018;90(1):28–34.PubMed
10.
go back to reference Desmedt M, Vertriest S, Hellings J, Bergs J, Dessers E, Vankrunkelsven P, et al. Economic impact of integrated care models for patients with chronic diseases: a systematic review. Value Health. 2016;19(6):892–902.PubMed Desmedt M, Vertriest S, Hellings J, Bergs J, Dessers E, Vankrunkelsven P, et al. Economic impact of integrated care models for patients with chronic diseases: a systematic review. Value Health. 2016;19(6):892–902.PubMed
11.
go back to reference Ponzio M, Gerzeli S, Brichetto G, Bezzini D, Mancardi GL, Zaratin P, et al. Economic impact of multiple sclerosis in Italy: focus on rehabilitation costs. Neurol Sci. 2015;36(2):227–34.PubMed Ponzio M, Gerzeli S, Brichetto G, Bezzini D, Mancardi GL, Zaratin P, et al. Economic impact of multiple sclerosis in Italy: focus on rehabilitation costs. Neurol Sci. 2015;36(2):227–34.PubMed
12.
go back to reference Ortiz-Rubio A, Cabrera-Martos I, Rodríguez-Torres J, Fajardo-Contreras W, Díaz-Pelegrina A, Valenza MC. Effects of a home-based upper limb training program in patients with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2016;97(12):2027–33.PubMed Ortiz-Rubio A, Cabrera-Martos I, Rodríguez-Torres J, Fajardo-Contreras W, Díaz-Pelegrina A, Valenza MC. Effects of a home-based upper limb training program in patients with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2016;97(12):2027–33.PubMed
13.
go back to reference Feys P, Coninx K, Kerkhofs L, De Weyer T, Truyens V, Maris A, et al. Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil. 2015;12:60.PubMedPubMedCentral Feys P, Coninx K, Kerkhofs L, De Weyer T, Truyens V, Maris A, et al. Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil. 2015;12:60.PubMedPubMedCentral
14.
go back to reference Basteris A, De Luca A, Sanguineti V, Solaro C, Mueller M, Carpinella I, et al. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in multiple sclerosis. IEEE Int Conf Rehabil Robot. 2011;2011:5975509.PubMed Basteris A, De Luca A, Sanguineti V, Solaro C, Mueller M, Carpinella I, et al. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in multiple sclerosis. IEEE Int Conf Rehabil Robot. 2011;2011:5975509.PubMed
15.
go back to reference Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil. 2011;8:5.PubMedPubMedCentral Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil. 2011;8:5.PubMedPubMedCentral
16.
go back to reference Maris A, Coninx K, Seelen H, Truyens V, De Weyer T, Geers R, et al. The impact of robot-mediated adaptive I-TRAVLE training on impaired upper limb function in chronic stroke and multiple sclerosis. Disabil Rehabil Assist Technol. 2018;13(1):1–9.PubMed Maris A, Coninx K, Seelen H, Truyens V, De Weyer T, Geers R, et al. The impact of robot-mediated adaptive I-TRAVLE training on impaired upper limb function in chronic stroke and multiple sclerosis. Disabil Rehabil Assist Technol. 2018;13(1):1–9.PubMed
17.
go back to reference Kalron A, Greenberg-Abrahami M, Gelav S, Achiron A. Effects of a new sensory re-education training tool on hand sensibility and manual dexterity in people with multiple sclerosis. NeuroRehabilitation. 2013;32(4):943–8.PubMed Kalron A, Greenberg-Abrahami M, Gelav S, Achiron A. Effects of a new sensory re-education training tool on hand sensibility and manual dexterity in people with multiple sclerosis. NeuroRehabilitation. 2013;32(4):943–8.PubMed
18.
go back to reference Kamm CP, Mattle HP, Muri RM, et al. Home-based training to improve manual dexterity in patients with multiple sclerosis: a randomized controlled trial. Mult Scler. 2015;21:1546–56.PubMed Kamm CP, Mattle HP, Muri RM, et al. Home-based training to improve manual dexterity in patients with multiple sclerosis: a randomized controlled trial. Mult Scler. 2015;21:1546–56.PubMed
19.
go back to reference Amatya B, Galea MP, Kesselring J, Khan F. Effectiveness of telerehabilitation interventions in persons with multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2015;4(4):358–69.PubMed Amatya B, Galea MP, Kesselring J, Khan F. Effectiveness of telerehabilitation interventions in persons with multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2015;4(4):358–69.PubMed
20.
go back to reference Battaglia MA, Bezzini D. Estimated prevalence of multiple sclerosis in Italy in 2015. Neurol Sci. 2017;38(3):473–9.PubMed Battaglia MA, Bezzini D. Estimated prevalence of multiple sclerosis in Italy in 2015. Neurol Sci. 2017;38(3):473–9.PubMed
21.
go back to reference Johansson S, Ytterberg C, Claesson IM, et al. High concurrent presence of disability in multiple sclerosis. Associations with perceived health. J Neurol. 2007;254(6):767–73.PubMed Johansson S, Ytterberg C, Claesson IM, et al. High concurrent presence of disability in multiple sclerosis. Associations with perceived health. J Neurol. 2007;254(6):767–73.PubMed
22.
go back to reference Casuso-Holgado MJ, Martín-Valero R, Carazo AF, Medrano-Sánchez EM, Cortés-Vega MD, Montero-Bancalero FJ. Effectiveness of virtual reality training for balance and gait rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2018;32(9):1220–34.PubMed Casuso-Holgado MJ, Martín-Valero R, Carazo AF, Medrano-Sánchez EM, Cortés-Vega MD, Montero-Bancalero FJ. Effectiveness of virtual reality training for balance and gait rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2018;32(9):1220–34.PubMed
23.
go back to reference Massetti T, Trevizan IL, Arab C, Favero FM, Ribeiro-Papa DC, de Mello Monteiro CB. Virtual reality in multiple sclerosis - a systematic review. Mult Scler Relat Disord. 2016;8:107–12.PubMed Massetti T, Trevizan IL, Arab C, Favero FM, Ribeiro-Papa DC, de Mello Monteiro CB. Virtual reality in multiple sclerosis - a systematic review. Mult Scler Relat Disord. 2016;8:107–12.PubMed
24.
go back to reference Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Albiol-Pérez S, Palacios-Navarro G, Fardoun HM, et al. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014;2(2):e12.PubMedPubMedCentral Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Albiol-Pérez S, Palacios-Navarro G, Fardoun HM, et al. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014;2(2):e12.PubMedPubMedCentral
25.
go back to reference Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, Hughes AM. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Trans Neural Syst Rehabil Eng. 2016;24(2):235–48.PubMed Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, Hughes AM. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Trans Neural Syst Rehabil Eng. 2016;24(2):235–48.PubMed
26.
go back to reference Jonsdottir J, Bertoni R, Lawo M, Montesano A, Bowman T, Gabrielli S. Serious games for arm rehabilitation of persons with multiple sclerosis: a randomized controlled pilot study. Mult Scler Relat Disord. 2018;19:25–9.PubMed Jonsdottir J, Bertoni R, Lawo M, Montesano A, Bowman T, Gabrielli S. Serious games for arm rehabilitation of persons with multiple sclerosis: a randomized controlled pilot study. Mult Scler Relat Disord. 2018;19:25–9.PubMed
27.
go back to reference Chan L, Heinemann AW, Roberts J. Elevating the quality of disability and rehabilitation research: mandatory use of the reporting guidelines. Ann Phys Rehabil Med. 2014;57:558–60.PubMed Chan L, Heinemann AW, Roberts J. Elevating the quality of disability and rehabilitation research: mandatory use of the reporting guidelines. Ann Phys Rehabil Med. 2014;57:558–60.PubMed
28.
go back to reference Thompson AJ, Banwell BL, Barkhof F, Carroll WWM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.PubMed Thompson AJ, Banwell BL, Barkhof F, Carroll WWM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.PubMed
29.
go back to reference Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983;33:1444–52.PubMed Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983;33:1444–52.PubMed
30.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMed Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMed
31.
go back to reference Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharamceut Statist. 2005;4:287–91. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharamceut Statist. 2005;4:287–91.
32.
go back to reference Feys P, Lamers I, Francis G, Benedict R, Phillips G, LaRocca N, et al. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult Scler. 2017;23(5):711–20.PubMedPubMedCentral Feys P, Lamers I, Francis G, Benedict R, Phillips G, LaRocca N, et al. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult Scler. 2017;23(5):711–20.PubMedPubMedCentral
33.
go back to reference Tarakci E, Arman N, Taracki D, Kasapcopur O. Leap motion controller-based training for upper extremity rehabilitation in children and adolescents with physical disabilities: a randomized controlled trial. J Hand Ther. 2020;33(2):220–228.e1.PubMed Tarakci E, Arman N, Taracki D, Kasapcopur O. Leap motion controller-based training for upper extremity rehabilitation in children and adolescents with physical disabilities: a randomized controlled trial. J Hand Ther. 2020;33(2):220–228.e1.PubMed
34.
go back to reference Khademi M, Mousavi Hondori H, McKenzie A, Dodakian L, Lopes CV, Cramer SC. Free-hand interaction with leap motion controller for stroke rehabilitation. In: Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems; 2014. p. 1663–8. Khademi M, Mousavi Hondori H, McKenzie A, Dodakian L, Lopes CV, Cramer SC. Free-hand interaction with leap motion controller for stroke rehabilitation. In: Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems; 2014. p. 1663–8.
35.
go back to reference Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015;22(4):306–16.PubMed Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015;22(4):306–16.PubMed
36.
go back to reference Carpinella I, Cattaneo D, Ferrarin M. Quantitative assessment of upper limb motor function in multiple sclerosis using an instrumented Action Research Arm Test. J Neuroeng Rehabil. 2014;11:67.PubMedPubMedCentral Carpinella I, Cattaneo D, Ferrarin M. Quantitative assessment of upper limb motor function in multiple sclerosis using an instrumented Action Research Arm Test. J Neuroeng Rehabil. 2014;11:67.PubMedPubMedCentral
37.
go back to reference Chen CC, Bode RK. Psychometric validation of the Manual Ability Measure-36 (MAM-36) in patients with neurologic and musculoskeletal disorders. Arch Phys Med Rehabil. 2010;91(3):414–20.PubMed Chen CC, Bode RK. Psychometric validation of the Manual Ability Measure-36 (MAM-36) in patients with neurologic and musculoskeletal disorders. Arch Phys Med Rehabil. 2010;91(3):414–20.PubMed
38.
go back to reference Vickrey BG, Hays RD, Harooni R, Myers LW, Ellison GW. A health-related quality of life measure for multiple sclerosis. Qual Life Res. 1995;4(3):187–206.PubMed Vickrey BG, Hays RD, Harooni R, Myers LW, Ellison GW. A health-related quality of life measure for multiple sclerosis. Qual Life Res. 1995;4(3):187–206.PubMed
39.
go back to reference Gil-Gomez JA, Manzano-Hernandez P, Albiol-Perez S, Aula-Valero C, Gil-Gomez H, Lonzano-Quilis JA. USEQ: a short questionnaire for satisfaction evaluation of virtual rehabilitation systems. Sensors. 2017;17:1589.PubMedCentral Gil-Gomez JA, Manzano-Hernandez P, Albiol-Perez S, Aula-Valero C, Gil-Gomez H, Lonzano-Quilis JA. USEQ: a short questionnaire for satisfaction evaluation of virtual rehabilitation systems. Sensors. 2017;17:1589.PubMedCentral
40.
go back to reference Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991;41(5):685–91.PubMed Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991;41(5):685–91.PubMed
41.
go back to reference Piggott L, Wagner, Ziat M. Haptic neurorehabilitation and virtual reality for upper limb paralysis: a review. Crit Rev Biomed Eng. 2016;44(1–2):1–32.PubMed Piggott L, Wagner, Ziat M. Haptic neurorehabilitation and virtual reality for upper limb paralysis: a review. Crit Rev Biomed Eng. 2016;44(1–2):1–32.PubMed
Metadata
Title
The effect of a telerehabilitation virtual reality intervention on functional upper limb activities in people with multiple sclerosis: a study protocol for the TEAMS pilot randomized controlled trial
Authors
Alon Kalron
Anat Achiron
Massimiliano Pau
Eleonora Cocco
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-04650-2

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue