Skip to main content
Top
Published in: Trials 1/2020

Open Access 01-12-2020 | Methodology

Using systematic data categorisation to quantify the types of data collected in clinical trials: the DataCat project

Authors: Evelyn Crowley, Shaun Treweek, Katie Banister, Suzanne Breeman, Lynda Constable, Seonaidh Cotton, Anne Duncan, Adel El Feky, Heidi Gardner, Kirsteen Goodman, Doris Lanz, Alison McDonald, Emma Ogburn, Kath Starr, Natasha Stevens, Marie Valente, Gordon Fernie

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Data collection consumes a large proportion of clinical trial resources. Each data item requires time and effort for collection, processing and quality control procedures. In general, more data equals a heavier burden for trial staff and participants. It is also likely to increase costs. Knowing the types of data being collected, and in what proportion, will be helpful to ensure that limited trial resources and participant goodwill are used wisely.

Aim

The aim of this study is to categorise the types of data collected across a broad range of trials and assess what proportion of collected data each category represents.

Methods

We developed a standard operating procedure to categorise data into primary outcome, secondary outcome and 15 other categories. We categorised all variables collected on trial data collection forms from 18, mainly publicly funded, randomised superiority trials, including trials of an investigational medicinal product and complex interventions. Categorisation was done independently in pairs: one person having in-depth knowledge of the trial, the other independent of the trial. Disagreement was resolved through reference to the trial protocol and discussion, with the project team being consulted if necessary.

Key results

Primary outcome data accounted for 5.0% (median)/11.2% (mean) of all data items collected. Secondary outcomes accounted for 39.9% (median)/42.5% (mean) of all data items. Non-outcome data such as participant identifiers and demographic data represented 32.4% (median)/36.5% (mean) of all data items collected.

Conclusion

A small proportion of the data collected in our sample of 18 trials was related to the primary outcome. Secondary outcomes accounted for eight times the volume of data as the primary outcome. A substantial amount of data collection is not related to trial outcomes. Trialists should work to make sure that the data they collect are only those essential to support the health and treatment decisions of those whom the trial is designed to inform.
Appendix
Available only for authorised users
Literature
1.
go back to reference Friedman L, Furberg C, DeMets D. Data collection and quality control. Fundamentals of clinical trials. New York: Springer; 2010. p. 199–214.CrossRef Friedman L, Furberg C, DeMets D. Data collection and quality control. Fundamentals of clinical trials. New York: Springer; 2010. p. 199–214.CrossRef
2.
go back to reference Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elborne D, Egger M, Altman DG. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRef Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elborne D, Egger M, Altman DG. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRef
3.
go back to reference Getz KA, Stergiopoulos S, Marlborough M, Whitehill J, Curran M, Kaitin KI. Quantifying the magnitude and cost of collecting extraneous protocol data. Am J Ther. 2015;22:117–24.CrossRef Getz KA, Stergiopoulos S, Marlborough M, Whitehill J, Curran M, Kaitin KI. Quantifying the magnitude and cost of collecting extraneous protocol data. Am J Ther. 2015;22:117–24.CrossRef
4.
go back to reference Getz K. Improving protocol design feasibility to drive drug development economics and performance. Int J Environ Res Public Health. 2014;11:5069–80.CrossRef Getz K. Improving protocol design feasibility to drive drug development economics and performance. Int J Environ Res Public Health. 2014;11:5069–80.CrossRef
5.
go back to reference Al-Shahi Salman R, Beller E, Kagan J, Hemminki E, Phillips RS, Savulescu J, Macleod M, Wisely J, Chalmers I. Increasing value and reducing waste in biomedical research regulation and management. Lancet. 2014;383:176–85.CrossRef Al-Shahi Salman R, Beller E, Kagan J, Hemminki E, Phillips RS, Savulescu J, Macleod M, Wisely J, Chalmers I. Increasing value and reducing waste in biomedical research regulation and management. Lancet. 2014;383:176–85.CrossRef
6.
go back to reference Fougerou-Leurent C, Laviolle B, Tual C, et al. Impact of a targeted monitoring on data-quality and data-management workload of randomized controlled trials: a prospective comparative study. Br J Clin Pharmacol. 2019;85:2784–92 10.1111/bcp.14108.CrossRef Fougerou-Leurent C, Laviolle B, Tual C, et al. Impact of a targeted monitoring on data-quality and data-management workload of randomized controlled trials: a prospective comparative study. Br J Clin Pharmacol. 2019;85:2784–92 10.1111/bcp.14108.CrossRef
7.
go back to reference Getz K, Campo R. New benchmarks characterizing growth in protocol design complexity. Ther Innov Regul Sci. 2018;52(1):22–8.CrossRef Getz K, Campo R. New benchmarks characterizing growth in protocol design complexity. Ther Innov Regul Sci. 2018;52(1):22–8.CrossRef
8.
go back to reference Getz K, Wenger J, Campo R, Seguine E, Kaitin K. Assessing the impact of protocol design changes on clinical trial performance. Am J Ther. 2008;15:450–7.CrossRef Getz K, Wenger J, Campo R, Seguine E, Kaitin K. Assessing the impact of protocol design changes on clinical trial performance. Am J Ther. 2008;15:450–7.CrossRef
9.
go back to reference Brintnall-Karabelas J, Sung S, Cadman M, Squires C, Whorton K, Pao M. Improving recruitment in clinical trials: why eligible patients decline. J Empir Res Hum Res Ethics. 2011;6(1):69–74. Brintnall-Karabelas J, Sung S, Cadman M, Squires C, Whorton K, Pao M. Improving recruitment in clinical trials: why eligible patients decline. J Empir Res Hum Res Ethics. 2011;6(1):69–74.
10.
go back to reference Brunsdon D, Biesty L, Brocklehurst P, Brueton V, Devane D, Elliott J, Galvin S, Gamble C, Gardner H, Healy P, Hood K, Jordan J, Lanz D, Maeso B, Roberts A, Skene I, Soulsby I, Stewart D, Torgerson D, Treweek S, Whiting C, Worrall A, Gillies K. What are the most important unanswered research questions in trial retention? A James Lind Alliance Priority Setting Partnership: the PRioRiTy II (Prioritising Retention in Randomised Trials) study. Trials 2019;20(1):593. https://doi.org/10.21203/rs.2.439/v1. Brunsdon D, Biesty L, Brocklehurst P, Brueton V, Devane D, Elliott J, Galvin S, Gamble C, Gardner H, Healy P, Hood K, Jordan J, Lanz D, Maeso B, Roberts A, Skene I, Soulsby I, Stewart D, Torgerson D, Treweek S, Whiting C, Worrall A, Gillies K. What are the most important unanswered research questions in trial retention? A James Lind Alliance Priority Setting Partnership: the PRioRiTy II (Prioritising Retention in Randomised Trials) study. Trials 2019;20(1):593. https://​doi.​org/​10.​21203/​rs.​2.​439/​v1.
11.
go back to reference Kang H. The prevention and handling of the missing data. Korean J Anesthesiol. 2013;64(5):402–6.CrossRef Kang H. The prevention and handling of the missing data. Korean J Anesthesiol. 2013;64(5):402–6.CrossRef
12.
go back to reference O'Leary E, Seow H, Julian J, Levine M, Pond G. Data collection in cancer clinical trials: too much of a good thing? Clin Trials. 2013;10:624–32.CrossRef O'Leary E, Seow H, Julian J, Levine M, Pond G. Data collection in cancer clinical trials: too much of a good thing? Clin Trials. 2013;10:624–32.CrossRef
13.
go back to reference McClurg D, Goodman K, Hagen S, Harris F, Treweek S, Emmanuel A, Norton C, Coggrave M, Doran S, Norrie J, Donnan P, Mason H, Manoukian S. Abdominal massage for neurogenic bowel dysfunction in people with multiple sclerosis (AMBER — Abdominal Massage for Bowel Dysfunction Effectiveness Research): study protocol for a randomised controlled trial. Trials. 2017;18:150.CrossRef McClurg D, Goodman K, Hagen S, Harris F, Treweek S, Emmanuel A, Norton C, Coggrave M, Doran S, Norrie J, Donnan P, Mason H, Manoukian S. Abdominal massage for neurogenic bowel dysfunction in people with multiple sclerosis (AMBER — Abdominal Massage for Bowel Dysfunction Effectiveness Research): study protocol for a randomised controlled trial. Trials. 2017;18:150.CrossRef
15.
go back to reference Khan KS, Moore P, Wilson M, Hooper R, Allard S, Wrench I, Roberts T, McLoughlin C, Beresford L, Geoghegan J, Daniels J, Catling S, Clark VA, Ayuk P, Robson S, Gao-Smith F, Hogg M, Jackson L, Lanz D, Dodds J. A randomised controlled trial and economic evaluation of intraoperative cell salvage during caesarean section in women at risk of haemorrhage: the SALVO (cell SALVage in Obstetrics) trial. Health Technol Assess. 2018;22(2):1–88.CrossRef Khan KS, Moore P, Wilson M, Hooper R, Allard S, Wrench I, Roberts T, McLoughlin C, Beresford L, Geoghegan J, Daniels J, Catling S, Clark VA, Ayuk P, Robson S, Gao-Smith F, Hogg M, Jackson L, Lanz D, Dodds J. A randomised controlled trial and economic evaluation of intraoperative cell salvage during caesarean section in women at risk of haemorrhage: the SALVO (cell SALVage in Obstetrics) trial. Health Technol Assess. 2018;22(2):1–88.CrossRef
16.
go back to reference Daykin A, Clement C, Gamble C, Kearney A, Blazeby J, Clarke M, Lane JA, Shaw A. “Recruitment, recruitment, recruitment” – the need for more focus on retention: a qualitative study of five trials. Trials. 2018;19:76.CrossRef Daykin A, Clement C, Gamble C, Kearney A, Blazeby J, Clarke M, Lane JA, Shaw A. “Recruitment, recruitment, recruitment” – the need for more focus on retention: a qualitative study of five trials. Trials. 2018;19:76.CrossRef
17.
go back to reference Lingler JH, Schmidt KL, Gentry AL, Hu L, Terhorst LA. A new measure of research participant burden: brief report. J Empir Res Hum Res Ethics. 2014;9:46–9.CrossRef Lingler JH, Schmidt KL, Gentry AL, Hu L, Terhorst LA. A new measure of research participant burden: brief report. J Empir Res Hum Res Ethics. 2014;9:46–9.CrossRef
18.
go back to reference Brown MJ. The impact of clinical trials legislation on clinical pharmacology: problems and solutions. Br J Clin Pharmacol. 2009;67:487–93.CrossRef Brown MJ. The impact of clinical trials legislation on clinical pharmacology: problems and solutions. Br J Clin Pharmacol. 2009;67:487–93.CrossRef
19.
go back to reference Gargon E, Williamson PR, Altman DG, Blazeby JM, Tunis S, Clarke M. The COMET Initiative database: progress and activities update (2015). Trials. 2017;18:54.CrossRef Gargon E, Williamson PR, Altman DG, Blazeby JM, Tunis S, Clarke M. The COMET Initiative database: progress and activities update (2015). Trials. 2017;18:54.CrossRef
Metadata
Title
Using systematic data categorisation to quantify the types of data collected in clinical trials: the DataCat project
Authors
Evelyn Crowley
Shaun Treweek
Katie Banister
Suzanne Breeman
Lynda Constable
Seonaidh Cotton
Anne Duncan
Adel El Feky
Heidi Gardner
Kirsteen Goodman
Doris Lanz
Alison McDonald
Emma Ogburn
Kath Starr
Natasha Stevens
Marie Valente
Gordon Fernie
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-04388-x

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue