Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Research

Effects of a peer-led Walking In ScHools intervention (the WISH study) on physical activity levels of adolescent girls: a cluster randomised pilot study

Authors: Angela Carlin, Marie H. Murphy, Alan Nevill, Alison M. Gallagher

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

School-based interventions may be effective at increasing levels of physical activity (PA) among adolescents; however, there is a paucity of evidence on whether walking can be successfully promoted to increase PA in this age group. This pilot study aimed to assess the effects of a 12-week school-based peer-led brisk walking programme on levels of school-time PA post intervention.

Methods

Female participants, aged 11–13 years, were recruited from six post-primary schools in Northern Ireland. Participants were randomized by school (cluster) to participate in regular 10–15-min peer-led brisk walks throughout the school week (the WISH study) (n = 101, two schools) or to continue with their usual PA (n = 98, four schools). The primary outcome measure was school-time PA post intervention (week 12), assessed objectively using an Actigraph accelerometer. Secondary outcome measures included anthropometry, cardiorespiratory fitness and psychosocial measures. Changes in PA data between baseline (T0) and end of intervention (week 12) (T1) were analysed using a mixed between-within subjects analysis of variance with one between (group) and one within (time) subjects factor, with two levels.

Results

Of 199 participants recruited (mean age = 12.4 ± 0.6 years, 27% overweight/obese), 187 had valid accelerometer data for inclusion in subsequent analysis. A significant interaction effect was observed for changes in light intensity PA across the school day (p = 0.003), with those in the intervention increasing their light intensity PA by 8.27 mins/day compared with a decrease of 2.14 mins/day in the control group. No significant interactions were observed for the other PA measures across the intervention. Intervention effects on school-time PA were not sustained four months post intervention.

Conclusions

The intervention increased daily light intensity PA behaviour in these adolescent girls but did not change moderate to vigorous physical activity (MVPA). These findings suggest that a school-based brisk walking intervention may be feasible and can change PA behaviour in the short term, but it is possible that the self-selected walking speeds determined by a peer-leader may not be sufficient to reach MVPA in this age group. Further research is needed to evaluate the potential of school-based brisk walking to contribute to MVPA in adolescent girls.

Trial registration

ClinicalTrials.gov, NCT02871830. Registered on 16 August 2016) 
Literature
1.
go back to reference World Health Organization. Global strategy on diet, physical activity and health. Geneva, Switzerland: World Health Organization; 2010. World Health Organization. Global strategy on diet, physical activity and health. Geneva, Switzerland: World Health Organization; 2010.
2.
go back to reference Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, et al. How active are our children? Findings from the Millennium Cohort Study. BMJ Open. 2013;3(8):e002893.PubMedPubMedCentralCrossRef Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, et al. How active are our children? Findings from the Millennium Cohort Study. BMJ Open. 2013;3(8):e002893.PubMedPubMedCentralCrossRef
3.
go back to reference Breslin G, Gossrau-Breen D, McCay N, Gilmore G, MacDonald L, Hanna D. Physical activity, gender, weight status, and wellbeing in 9-to 11-year-old children: a cross-sectional survey. J Phys Act Health. 2012;9(3):394–401.PubMedCrossRef Breslin G, Gossrau-Breen D, McCay N, Gilmore G, MacDonald L, Hanna D. Physical activity, gender, weight status, and wellbeing in 9-to 11-year-old children: a cross-sectional survey. J Phys Act Health. 2012;9(3):394–401.PubMedCrossRef
4.
go back to reference Trost S, Pate R, Sallis J, Freedson P, Taylor W, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–5.PubMedCrossRef Trost S, Pate R, Sallis J, Freedson P, Taylor W, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–5.PubMedCrossRef
5.
go back to reference Treuth MS, Catellier DJ, Schmitz KH, Pate RR, Elder JP, McMurray RG, et al. Weekend and weekday patterns of physical activity in overweight and normal-weight adolescent girls. Obesity. 2007;15(7):1782–8.PubMedPubMedCentralCrossRef Treuth MS, Catellier DJ, Schmitz KH, Pate RR, Elder JP, McMurray RG, et al. Weekend and weekday patterns of physical activity in overweight and normal-weight adolescent girls. Obesity. 2007;15(7):1782–8.PubMedPubMedCentralCrossRef
6.
go back to reference Strong W, Malina R, Blimkie C, Daniels S, Dishman R, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7.PubMedCrossRef Strong W, Malina R, Blimkie C, Daniels S, Dishman R, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7.PubMedCrossRef
7.
go back to reference Hallal PC, Victora CG, Azevedo MR, Wells JCK. Adolescent physical activity and health - A systematic review. Sports Med. 2006;36(12):1019–30.PubMedCrossRef Hallal PC, Victora CG, Azevedo MR, Wells JCK. Adolescent physical activity and health - A systematic review. Sports Med. 2006;36(12):1019–30.PubMedCrossRef
8.
go back to reference Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2(3):187–95.PubMedCrossRef Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2(3):187–95.PubMedCrossRef
9.
go back to reference Cooper AR, Jago R, Southward EF, Page AS. Active travel and physical activity across the school transition: the PEACH project. Med Sci Sports Exerc. 2012;44(10):1890–7.PubMedCrossRef Cooper AR, Jago R, Southward EF, Page AS. Active travel and physical activity across the school transition: the PEACH project. Med Sci Sports Exerc. 2012;44(10):1890–7.PubMedCrossRef
10.
go back to reference Jago R, Page AS, Cooper AR. Friends and physical activity during the transition from primary to secondary school. Med Sci Sports Exerc. 2012;44(1):111–7.PubMedCrossRef Jago R, Page AS, Cooper AR. Friends and physical activity during the transition from primary to secondary school. Med Sci Sports Exerc. 2012;44(1):111–7.PubMedCrossRef
11.
go back to reference De Meester F, Van Dyck D, De Bourdeaudhuij I, Deforche B, Cardon G. Changes in physical activity during the transition from primary to secondary school in Belgian children: what is the role of the school environment? BMC Public Health. 2014;14:261.PubMedPubMedCentralCrossRef De Meester F, Van Dyck D, De Bourdeaudhuij I, Deforche B, Cardon G. Changes in physical activity during the transition from primary to secondary school in Belgian children: what is the role of the school environment? BMC Public Health. 2014;14:261.PubMedPubMedCentralCrossRef
12.
go back to reference Dwyer J, Allison K, Goldenberg E, Fein A, Yoshida K, Boutilier M. Adolescent girls’ perceived barriers to participation in physical activity. Adolescence. 2006;41(161):75–89.PubMed Dwyer J, Allison K, Goldenberg E, Fein A, Yoshida K, Boutilier M. Adolescent girls’ perceived barriers to participation in physical activity. Adolescence. 2006;41(161):75–89.PubMed
13.
go back to reference Vu M, Murrie D, Gonzalez V, Jobe J. Listening to girls and boys talk about girls’ physical activity behaviors. Health Educ Behav. 2006;33(1):81–96.PubMedPubMedCentralCrossRef Vu M, Murrie D, Gonzalez V, Jobe J. Listening to girls and boys talk about girls’ physical activity behaviors. Health Educ Behav. 2006;33(1):81–96.PubMedPubMedCentralCrossRef
14.
go back to reference Whitehead S, Biddle S. Adolescent girls’ perceptions of physical activity: a focus group study. Eur Phys Educ Rev. 2008;14(2):243–62.CrossRef Whitehead S, Biddle S. Adolescent girls’ perceptions of physical activity: a focus group study. Eur Phys Educ Rev. 2008;14(2):243–62.CrossRef
15.
go back to reference Slater A, Tiggemann M. “Uncool to do sport”: A focus group study of adolescent girls’ reasons for withdrawing from physical activity. Psychol Sport Exerc. 2010;11(6):619–26.CrossRef Slater A, Tiggemann M. “Uncool to do sport”: A focus group study of adolescent girls’ reasons for withdrawing from physical activity. Psychol Sport Exerc. 2010;11(6):619–26.CrossRef
16.
go back to reference Carlin A, Murphy MH, Gallagher AM. Current influences and approaches to promote future physical activity in 11–13 year olds: a focus group study. BMC Public Health. 2015;15:1270.PubMedPubMedCentralCrossRef Carlin A, Murphy MH, Gallagher AM. Current influences and approaches to promote future physical activity in 11–13 year olds: a focus group study. BMC Public Health. 2015;15:1270.PubMedPubMedCentralCrossRef
17.
go back to reference Cale L. Physical activity promotion in secondary schools. Eur Phys Educ Rev. 2000;6(1):71–90.CrossRef Cale L. Physical activity promotion in secondary schools. Eur Phys Educ Rev. 2000;6(1):71–90.CrossRef
18.
go back to reference Belanger M, Sabiston CM, Barnett TA, O’Loughlin E, Ward S, Contreras G, et al. Number of years of participation in some, but not all, types of physical activity during adolescence predicts level of physical activity in adulthood: Results from a 13-year study. Int J Behav Nutr Phys Act. 2015;12:76.PubMedPubMedCentralCrossRef Belanger M, Sabiston CM, Barnett TA, O’Loughlin E, Ward S, Contreras G, et al. Number of years of participation in some, but not all, types of physical activity during adolescence predicts level of physical activity in adulthood: Results from a 13-year study. Int J Behav Nutr Phys Act. 2015;12:76.PubMedPubMedCentralCrossRef
19.
go back to reference Belanger M, Townsend N, Foster C. Age-related differences in physical activity profiles of English adults. Prev Med. 2011;52(3–4):247–9.PubMed Belanger M, Townsend N, Foster C. Age-related differences in physical activity profiles of English adults. Prev Med. 2011;52(3–4):247–9.PubMed
21.
go back to reference Shultz SP, Browning RC, Schutz Y, Maffeis C, Hills AP. Childhood obesity and walking: guidelines and challenges. Int J Pediatr Obes. 2011;6(5–6):332–41.PubMedCrossRef Shultz SP, Browning RC, Schutz Y, Maffeis C, Hills AP. Childhood obesity and walking: guidelines and challenges. Int J Pediatr Obes. 2011;6(5–6):332–41.PubMedCrossRef
22.
go back to reference Ford P, Swaine I. Continuous versus accumulated brisk walking in children aged 8–11 years. Eur J Sport Sci. 2012;12(1):89–95.CrossRef Ford P, Swaine I. Continuous versus accumulated brisk walking in children aged 8–11 years. Eur J Sport Sci. 2012;12(1):89–95.CrossRef
23.
go back to reference Carlin A, Murphy MH, Gallagher AM. Do interventions to increase walking work? A systematic review of interventions in children and adolescents. Sports Med. 2016;46(4):515–30.PubMedCrossRef Carlin A, Murphy MH, Gallagher AM. Do interventions to increase walking work? A systematic review of interventions in children and adolescents. Sports Med. 2016;46(4):515–30.PubMedCrossRef
24.
go back to reference Mendoza JA, Watson K, Baranowski T, Nicklas TA, Uscanga DK, Hanfling MJ. The walking school bus and children’s physical activity: a pilot cluster randomized controlled trial. Pediatrics. 2011;128(3):E537–44.PubMedPubMedCentral Mendoza JA, Watson K, Baranowski T, Nicklas TA, Uscanga DK, Hanfling MJ. The walking school bus and children’s physical activity: a pilot cluster randomized controlled trial. Pediatrics. 2011;128(3):E537–44.PubMedPubMedCentral
25.
go back to reference McMinn D, Rowe DA, Murtagh S, Nelson NM. The effect of a school-based active commuting intervention on children’s commuting physical activity and daily physical activity. Prev Med. 2012;54(5):316–8.PubMedCrossRef McMinn D, Rowe DA, Murtagh S, Nelson NM. The effect of a school-based active commuting intervention on children’s commuting physical activity and daily physical activity. Prev Med. 2012;54(5):316–8.PubMedCrossRef
26.
27.
go back to reference Ford PA, Perkins G, Swaine I. Effects of a 15-week accumulated brisk walking programme on the body composition of primary school children. J Sports Sci. 2013;31(2):114–22.PubMedCrossRef Ford PA, Perkins G, Swaine I. Effects of a 15-week accumulated brisk walking programme on the body composition of primary school children. J Sports Sci. 2013;31(2):114–22.PubMedCrossRef
28.
go back to reference Parrish A, Okely AD, Stanley RM, Ridgers ND. The effect of school recess interventions on physical activity a systematic review. Sports Med. 2013;43(4):287–99.PubMedCrossRef Parrish A, Okely AD, Stanley RM, Ridgers ND. The effect of school recess interventions on physical activity a systematic review. Sports Med. 2013;43(4):287–99.PubMedCrossRef
29.
go back to reference Hohepa M, Scragg R, Schofield G, Kolt GS, Schaaf D. Social support for youth physical activity: Importance of siblings, parents, friends and school support across a segmented school day. Int J Behav Nutr Phys Act. 2007;4:54.PubMedPubMedCentralCrossRef Hohepa M, Scragg R, Schofield G, Kolt GS, Schaaf D. Social support for youth physical activity: Importance of siblings, parents, friends and school support across a segmented school day. Int J Behav Nutr Phys Act. 2007;4:54.PubMedPubMedCentralCrossRef
30.
go back to reference Horne P, Tapper K, Lowe C, Hardman C, Jackson M, Woolner J. Increasing children’s fruit and vegetable consumption: a peer-modelling and rewards-based intervention. Eur J Clin Nutr. 2004;58(12):1649–60.PubMedCrossRef Horne P, Tapper K, Lowe C, Hardman C, Jackson M, Woolner J. Increasing children’s fruit and vegetable consumption: a peer-modelling and rewards-based intervention. Eur J Clin Nutr. 2004;58(12):1649–60.PubMedCrossRef
31.
go back to reference Hardman CA, Horne PJ, Lowe CF. Effects of rewards, peer-modelling and pedometer targets on children’s physical activity: a school-based intervention study. Psychol Health. 2011;26(1):3–21.PubMedCrossRef Hardman CA, Horne PJ, Lowe CF. Effects of rewards, peer-modelling and pedometer targets on children’s physical activity: a school-based intervention study. Psychol Health. 2011;26(1):3–21.PubMedCrossRef
32.
go back to reference Bandura A. Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall Inc; 1986. Bandura A. Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall Inc; 1986.
33.
go back to reference Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92(11):963–9.PubMedPubMedCentralCrossRef Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92(11):963–9.PubMedPubMedCentralCrossRef
34.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.PubMedCrossRef Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.PubMedCrossRef
35.
go back to reference Cole T, Bellizzi M, Flegal K, Dietz W. Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J. 2000;320(7244):1240–3.CrossRef Cole T, Bellizzi M, Flegal K, Dietz W. Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J. 2000;320(7244):1240–3.CrossRef
36.
go back to reference McArdle W, Katch F, Perchar G, Jacobson L, Ruck S. Reliability and Interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Med Sci Sports Exerc. 1972;4(4):182–6.CrossRef McArdle W, Katch F, Perchar G, Jacobson L, Ruck S. Reliability and Interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Med Sci Sports Exerc. 1972;4(4):182–6.CrossRef
37.
go back to reference Lubans DR, Morgan PJ, Collins CE, Boreham CA, Callister R. The relationship between heart rate intensity and pedometer step counts in adolescents. J Sports Sci. 2009;27(6):591–7.PubMedCrossRef Lubans DR, Morgan PJ, Collins CE, Boreham CA, Callister R. The relationship between heart rate intensity and pedometer step counts in adolescents. J Sports Sci. 2009;27(6):591–7.PubMedCrossRef
38.
go back to reference Garcia A, Pender N, Antonakos C, Ronis D. Changes in physical activity beliefs and behaviors of boys and girls across the transition to junior high school. J Adolesc Health. 1998;22(5):394–402.PubMedCrossRef Garcia A, Pender N, Antonakos C, Ronis D. Changes in physical activity beliefs and behaviors of boys and girls across the transition to junior high school. J Adolesc Health. 1998;22(5):394–402.PubMedCrossRef
39.
go back to reference Prochaska J, Rodgers M, Sallis J. Association of parent and peer support with adolescent physical activity. Res Q Exerc Sport. 2002;73(2):206–10.PubMedCrossRef Prochaska J, Rodgers M, Sallis J. Association of parent and peer support with adolescent physical activity. Res Q Exerc Sport. 2002;73(2):206–10.PubMedCrossRef
40.
go back to reference Robbins LB, Wu T, Sikorskii A, Morley B. Psychometric assessment of the adolescent physical activity perceived benefits and barriers scales. J Nurs Meas. 2008;16(2):98–112.PubMedCrossRef Robbins LB, Wu T, Sikorskii A, Morley B. Psychometric assessment of the adolescent physical activity perceived benefits and barriers scales. J Nurs Meas. 2008;16(2):98–112.PubMedCrossRef
41.
go back to reference Lee L, Kuo Y, Fanaw D, Perng S, Juang I. The effect of an intervention combining self-efficacy theory and pedometers on promoting physical activity among adolescents. J Clin Nurs. 2012;21(7–8):914–22.PubMedCrossRef Lee L, Kuo Y, Fanaw D, Perng S, Juang I. The effect of an intervention combining self-efficacy theory and pedometers on promoting physical activity among adolescents. J Clin Nurs. 2012;21(7–8):914–22.PubMedCrossRef
42.
go back to reference Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651. Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
43.
go back to reference Metcalf BS, Hosking J, Jeffery AN, Henley WE, Wilkin TJ. Exploring the adolescent fall in physical activity: a 10-yr cohort study (EarlyBird 41). Med Sci Sports Exerc. 2015;47(10):2084–92.PubMedCrossRef Metcalf BS, Hosking J, Jeffery AN, Henley WE, Wilkin TJ. Exploring the adolescent fall in physical activity: a 10-yr cohort study (EarlyBird 41). Med Sci Sports Exerc. 2015;47(10):2084–92.PubMedCrossRef
44.
go back to reference Carson V, Ridgers ND, Howard BJ, Winkler EA, Healy GN, Owen N, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS One. 2013;8(8):e71417.PubMedPubMedCentralCrossRef Carson V, Ridgers ND, Howard BJ, Winkler EA, Healy GN, Owen N, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS One. 2013;8(8):e71417.PubMedPubMedCentralCrossRef
45.
go back to reference Schofield L, Mummery W, Schofield G. Effects of a controlled pedometer-intervention trial for low-active adolescent girls. Med Sci Sports Exerc. 2005;37(8):1414–20.PubMedCrossRef Schofield L, Mummery W, Schofield G. Effects of a controlled pedometer-intervention trial for low-active adolescent girls. Med Sci Sports Exerc. 2005;37(8):1414–20.PubMedCrossRef
46.
go back to reference Sirard J, Pate R. Physical activity assessment in children and adolescents. Sports Med. 2001;31(6):439–54.PubMedCrossRef Sirard J, Pate R. Physical activity assessment in children and adolescents. Sports Med. 2001;31(6):439–54.PubMedCrossRef
47.
go back to reference Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.PubMedPubMedCentralCrossRef Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.PubMedPubMedCentralCrossRef
48.
go back to reference De Meester F, van Lenthe FJ, Spittaels H, Lien N, De Bourdeaudhuij I. Interventions for promoting physical activity among European teenagers: a systematic review. Int J Behav Nutr Phys Act. 2009;6:82.PubMedPubMedCentralCrossRef De Meester F, van Lenthe FJ, Spittaels H, Lien N, De Bourdeaudhuij I. Interventions for promoting physical activity among European teenagers: a systematic review. Int J Behav Nutr Phys Act. 2009;6:82.PubMedPubMedCentralCrossRef
49.
go back to reference Salvy S, de la Haye K, Bowker JC, Hermans RCJ. Influence of peers and friends on children’s and adolescents’ eating and activity behaviors. Physiol Behav. 2012;106(3):369–78.PubMedPubMedCentralCrossRef Salvy S, de la Haye K, Bowker JC, Hermans RCJ. Influence of peers and friends on children’s and adolescents’ eating and activity behaviors. Physiol Behav. 2012;106(3):369–78.PubMedPubMedCentralCrossRef
50.
go back to reference Fitzgerald A, Fitzgerald N, Aherne C. Do peers matter? A review of peer and/or friends’ influence on physical activity among American adolescents. J Adolesc. 2012;35(4):941–58.PubMedCrossRef Fitzgerald A, Fitzgerald N, Aherne C. Do peers matter? A review of peer and/or friends’ influence on physical activity among American adolescents. J Adolesc. 2012;35(4):941–58.PubMedCrossRef
51.
go back to reference Young JA, Symons CM, Pain MD, Harvey JT, Eime RM, Craike MJ, et al. Role models of Australian female adolescents: a longitudinal study to inform programmes designed to increase physical activity and sport participation. Eur Phys Educ Rev. 2015;21(4):451–66.CrossRef Young JA, Symons CM, Pain MD, Harvey JT, Eime RM, Craike MJ, et al. Role models of Australian female adolescents: a longitudinal study to inform programmes designed to increase physical activity and sport participation. Eur Phys Educ Rev. 2015;21(4):451–66.CrossRef
52.
go back to reference Ridgers ND, Salmon J, Parrish A, Stanley RM, Okely AD. Physical activity during school recess a systematic review. Am J Prev Med. 2012;43(3):320–8.PubMedCrossRef Ridgers ND, Salmon J, Parrish A, Stanley RM, Okely AD. Physical activity during school recess a systematic review. Am J Prev Med. 2012;43(3):320–8.PubMedCrossRef
53.
go back to reference Sallis J, Prochaska J, Taylor W. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc. 2000;32(5):963–75.PubMedCrossRef Sallis J, Prochaska J, Taylor W. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc. 2000;32(5):963–75.PubMedCrossRef
54.
go back to reference Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef
55.
go back to reference Laird Y, Fawkner S, Kelly P, McNamee L, Niven A. The role of social support on physical activity behaviour in adolescent girls: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2016;13:79.PubMedPubMedCentralCrossRef Laird Y, Fawkner S, Kelly P, McNamee L, Niven A. The role of social support on physical activity behaviour in adolescent girls: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2016;13:79.PubMedPubMedCentralCrossRef
56.
go back to reference Trost S, McIver K, Pate R. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11):S531–43.PubMedCrossRef Trost S, McIver K, Pate R. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11):S531–43.PubMedCrossRef
57.
go back to reference Van Coevering P, Harnack L, Schmitz K, Fulton J, Galuska D, Gao S. Feasibility of using accelerometers to measure physical activity in young adolescents. Med Sci Sports Exerc. 2005;37(5):867–71.PubMedCrossRef Van Coevering P, Harnack L, Schmitz K, Fulton J, Galuska D, Gao S. Feasibility of using accelerometers to measure physical activity in young adolescents. Med Sci Sports Exerc. 2005;37(5):867–71.PubMedCrossRef
58.
go back to reference Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105(3):977–87.PubMedCrossRef Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105(3):977–87.PubMedCrossRef
59.
go back to reference Trost S. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1(4):299–314.CrossRef Trost S. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1(4):299–314.CrossRef
Metadata
Title
Effects of a peer-led Walking In ScHools intervention (the WISH study) on physical activity levels of adolescent girls: a cluster randomised pilot study
Authors
Angela Carlin
Marie H. Murphy
Alan Nevill
Alison M. Gallagher
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-017-2415-4

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue