Skip to main content
Top
Published in: Breast Cancer Research 1/2024

Open Access 01-12-2024 | Breast Cancer | Research

Paradoxical cancer cell proliferation after FGFR inhibition through decreased p21 signaling in FGFR1-amplified breast cancer cells

Authors: Feng Chi, Jason I. Griffiths, Aritro Nath, Andrea H. Bild

Published in: Breast Cancer Research | Issue 1/2024

Login to get access

Abstract

Fibroblast growth factors (FGFs) control various cellular functions through fibroblast growth factor receptor (FGFR) activation, including proliferation, differentiation, migration, and survival. FGFR amplification in ER + breast cancer patients correlate with poor prognosis, and FGFR inhibitors are currently being tested in clinical trials. By comparing three-dimensional spheroid growth of ER + breast cancer cells with and without FGFR1 amplification, our research discovered that FGF2 treatment can paradoxically decrease proliferation in cells with FGFR1 amplification or overexpression. In contrast, FGF2 treatment in cells without FGFR1 amplification promotes classical FGFR proliferative signaling through the MAPK cascade. The growth inhibitory effect of FGF2 in FGFR1 amplified cells aligned with an increase in p21, a cell cycle inhibitor that hinders the G1 to S phase transition in the cell cycle. Additionally, FGF2 addition in FGFR1 amplified cells activated JAK-STAT signaling and promoted a stem cell-like state. FGF2-induced paradoxical effects were reversed by inhibiting p21 or the JAK-STAT pathway and with pan-FGFR inhibitors. Analysis of patient ER + breast tumor transcriptomes from the TCGA and METABRIC datasets demonstrated a strong positive association between expression of FGF2 and stemness signatures, which was further enhanced in tumors with high FGFR1 expression. Overall, our findings reveal a divergence in FGFR signaling, transitioning from a proliferative to stemness state driven by activation of JAK-STAT signaling and modulation of p21 levels. Activation of these divergent signaling pathways in FGFR amplified cancer cells and paradoxical growth effects highlight a challenge in the use of FGFR inhibitors in cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deo SVS, Sharma J, Kumar S. GLOBOCAN 2020 Report on Global Cancer Burden: challenges and opportunities for Surgical oncologists. Ann Surg Oncol. 2022;29:6497–500.PubMedCrossRef Deo SVS, Sharma J, Kumar S. GLOBOCAN 2020 Report on Global Cancer Burden: challenges and opportunities for Surgical oncologists. Ann Surg Oncol. 2022;29:6497–500.PubMedCrossRef
2.
go back to reference Jatoi I, Chen BE, Anderson WF. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. Rosenberg PS. J Clin Oncol. 2007;25:1683–90.PubMedCrossRef Jatoi I, Chen BE, Anderson WF. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. Rosenberg PS. J Clin Oncol. 2007;25:1683–90.PubMedCrossRef
3.
go back to reference Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.PubMedCrossRef Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.PubMedCrossRef
4.
go back to reference Touat M, Ileana E, Postel-Vinay S, André F, Soria JC. Targeting FGFR signaling in Cancer. Clin Cancer Res. 2015;21:2684–94.PubMedCrossRef Touat M, Ileana E, Postel-Vinay S, André F, Soria JC. Targeting FGFR signaling in Cancer. Clin Cancer Res. 2015;21:2684–94.PubMedCrossRef
5.
go back to reference Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef
6.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B. Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1.PubMedPubMedCentralCrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B. Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1.PubMedPubMedCentralCrossRef
7.
go back to reference Elbauomy ES, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9:R23.PubMedPubMedCentralCrossRef Elbauomy ES, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9:R23.PubMedPubMedCentralCrossRef
8.
go back to reference Shi YJ, Tsang JY, Ni YB, Chan SK, Chan KF, Tse GM. FGFR1 is an adverse outcome indicator for luminal A breast cancers. Oncotarget. 2016;7:5063–73.PubMedCrossRef Shi YJ, Tsang JY, Ni YB, Chan SK, Chan KF, Tse GM. FGFR1 is an adverse outcome indicator for luminal A breast cancers. Oncotarget. 2016;7:5063–73.PubMedCrossRef
9.
go back to reference Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.PubMedCrossRef Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.PubMedCrossRef
10.
go back to reference Servetto A, Formisano L, Arteaga CL. FGFR signaling and endocrine resistance in breast cancer:challenges for the clinical development of FGFR inhibitors. Biochim Biophys Acta Rev Cancer. 2021;1876:188595.PubMedPubMedCentralCrossRef Servetto A, Formisano L, Arteaga CL. FGFR signaling and endocrine resistance in breast cancer:challenges for the clinical development of FGFR inhibitors. Biochim Biophys Acta Rev Cancer. 2021;1876:188595.PubMedPubMedCentralCrossRef
11.
go back to reference Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000;6:743–50.PubMedCrossRef Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000;6:743–50.PubMedCrossRef
12.
go back to reference Furdui CM, Lew ED, Schlessinger J, Anderson KS. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell. 2006;21:711–7.PubMedCrossRef Furdui CM, Lew ED, Schlessinger J, Anderson KS. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell. 2006;21:711–7.PubMedCrossRef
13.
go back to reference Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.PubMedCrossRef Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.PubMedCrossRef
14.
go back to reference Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2 + flux but not mitogenesis. Nature. 1992;358:678–81.PubMedCrossRef Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2 + flux but not mitogenesis. Nature. 1992;358:678–81.PubMedCrossRef
15.
go back to reference Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci. 1999;4:165–77.CrossRef Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci. 1999;4:165–77.CrossRef
16.
go back to reference Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000;19:3309–20.PubMedCrossRef Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000;19:3309–20.PubMedCrossRef
17.
go back to reference Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther. 2017;179:171–87.PubMedCrossRef Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther. 2017;179:171–87.PubMedCrossRef
18.
go back to reference Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.PubMedCrossRef Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.PubMedCrossRef
19.
go back to reference Stachowiak MK, Maher PA, Stachowiak EK. Integrative nuclear signaling in cell development–a role for FGF receptor-1. DNA Cell Biol. 2007;26:811–26.PubMedCrossRef Stachowiak MK, Maher PA, Stachowiak EK. Integrative nuclear signaling in cell development–a role for FGF receptor-1. DNA Cell Biol. 2007;26:811–26.PubMedCrossRef
20.
go back to reference McLeskey SW, Ding IY, Lippman ME, Kern FG. MDA-MB-134 breast carcinoma cells overexpress fibroblast growth factor (FGF) receptors and are growth-inhibited by FGF ligands. Cancer Res. 1994;54:523–30.PubMed McLeskey SW, Ding IY, Lippman ME, Kern FG. MDA-MB-134 breast carcinoma cells overexpress fibroblast growth factor (FGF) receptors and are growth-inhibited by FGF ligands. Cancer Res. 1994;54:523–30.PubMed
21.
go back to reference Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70:2085–94.PubMedPubMedCentralCrossRef Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70:2085–94.PubMedPubMedCentralCrossRef
22.
go back to reference Fearon AE, Gould CR, Grose RP. FGFR signalling in women’s cancers. Int J Biochem Cell Biol. 2013;45:2832–42.PubMedCrossRef Fearon AE, Gould CR, Grose RP. FGFR signalling in women’s cancers. Int J Biochem Cell Biol. 2013;45:2832–42.PubMedCrossRef
23.
go back to reference Johnson MR, Valentine C, Basilico C, Mansukhani A. FGF signaling activates STAT1 and p21 and inhibits the estrogen response and proliferation of MCF-7 cells. Oncogene. 1998; 16:2647–56. Johnson MR, Valentine C, Basilico C, Mansukhani A. FGF signaling activates STAT1 and p21 and inhibits the estrogen response and proliferation of MCF-7 cells. Oncogene. 1998; 16:2647–56.
25.
26.
go back to reference Georgakilas AG, Martin OA, Bonner WM. p21: a two-Faced Genome Guardian. Trends Mol Med. 2017;23:310–9.PubMedCrossRef Georgakilas AG, Martin OA, Bonner WM. p21: a two-Faced Genome Guardian. Trends Mol Med. 2017;23:310–9.PubMedCrossRef
27.
go back to reference Al Bitar S, Gali-Muhtasib H. The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in Targeting Cancer: Molecular mechanisms and Novel therapeutics. Cancers (Basel). 2019;11:1475.PubMedCrossRef Al Bitar S, Gali-Muhtasib H. The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in Targeting Cancer: Molecular mechanisms and Novel therapeutics. Cancers (Basel). 2019;11:1475.PubMedCrossRef
28.
go back to reference Scolnick DM, Chehab NH, Stavridi ES, Lien MC, Caruso L, Moran E, et al. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 1997;57:3693–6.PubMed Scolnick DM, Chehab NH, Stavridi ES, Lien MC, Caruso L, Moran E, et al. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 1997;57:3693–6.PubMed
29.
go back to reference Kasper LH, Thomas MC, Zambetti GP, Brindle PK. Double null cells reveal that CBP and p300 are dispensable for p53 targets p21 and Mdm2 but variably required for target genes of other signaling pathways. Cell Cycle. 2011;10:212–21.PubMedPubMedCentralCrossRef Kasper LH, Thomas MC, Zambetti GP, Brindle PK. Double null cells reveal that CBP and p300 are dispensable for p53 targets p21 and Mdm2 but variably required for target genes of other signaling pathways. Cell Cycle. 2011;10:212–21.PubMedPubMedCentralCrossRef
30.
go back to reference Snowden AW, Anderson LA, Webster GA, Perkins ND. A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol. 2000;20:2676–86.PubMedPubMedCentralCrossRef Snowden AW, Anderson LA, Webster GA, Perkins ND. A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol. 2000;20:2676–86.PubMedPubMedCentralCrossRef
31.
go back to reference Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13:1361–6.PubMedPubMedCentralCrossRef Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13:1361–6.PubMedPubMedCentralCrossRef
32.
go back to reference Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.PubMedCrossRef Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.PubMedCrossRef
33.
go back to reference Owen KL, Brockwell NK, Parker BS, JAK-STAT Signaling. A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers (Basel). 2019; 11:2002. Owen KL, Brockwell NK, Parker BS, JAK-STAT Signaling. A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers (Basel). 2019; 11:2002.
34.
go back to reference Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282:20059–63.PubMedCrossRef Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282:20059–63.PubMedCrossRef
35.
go back to reference Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM, et al. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997;94:1074–9.PubMedPubMedCentralCrossRef Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM, et al. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997;94:1074–9.PubMedPubMedCentralCrossRef
36.
go back to reference Ko J, Meyer AN, Haas M, Donoghue DJ. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget. 2021;12:22–36.PubMedPubMedCentralCrossRef Ko J, Meyer AN, Haas M, Donoghue DJ. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget. 2021;12:22–36.PubMedPubMedCentralCrossRef
37.
go back to reference Gray M, Milanesi B, Grieco L, Luvoni V, Kehler GC, Bellipanni J, Cocola C, Molgora S, Piscitelli E, Veronesi MC, Greco M, Bragato C, Moro M, et al. Crosti J Cell Biochem. 2017;118:570–84.PubMedCrossRef Gray M, Milanesi B, Grieco L, Luvoni V, Kehler GC, Bellipanni J, Cocola C, Molgora S, Piscitelli E, Veronesi MC, Greco M, Bragato C, Moro M, et al. Crosti J Cell Biochem. 2017;118:570–84.PubMedCrossRef
38.
go back to reference Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.
39.
40.
go back to reference Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Merl Res Rev. 2014;34:280–300.CrossRef Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Merl Res Rev. 2014;34:280–300.CrossRef
41.
42.
go back to reference Elizabeth CS, Nicholas CT, Clare P, Alex P, Gina B, et al. Phase II multicenter proof of concept study of AZD4547 in FGFR amplified tumours. J Clin Oncol. 2015;33:2508.CrossRef Elizabeth CS, Nicholas CT, Clare P, Alex P, Gina B, et al. Phase II multicenter proof of concept study of AZD4547 in FGFR amplified tumours. J Clin Oncol. 2015;33:2508.CrossRef
43.
go back to reference Ferguson HR, Smith MP, Francavilla C. Fibroblast growth factor receptors (FGFRs) and Noncanonical partners in Cancer Signaling. Cells. 2021;10:1201. PubMedPubMedCentralCrossRef Ferguson HR, Smith MP, Francavilla C. Fibroblast growth factor receptors (FGFRs) and Noncanonical partners in Cancer Signaling. Cells. 2021;10:1201. PubMedPubMedCentralCrossRef
44.
go back to reference Wettersten HI, Hee Hwang S, Li C, Shiu EY, Wecksler AT, Hammock BD, et al. A novel p21 attenuator which is structurally related to sorafenib. Cancer Biol Ther. 2013;14:278–85.PubMedPubMedCentralCrossRef Wettersten HI, Hee Hwang S, Li C, Shiu EY, Wecksler AT, Hammock BD, et al. A novel p21 attenuator which is structurally related to sorafenib. Cancer Biol Ther. 2013;14:278–85.PubMedPubMedCentralCrossRef
45.
go back to reference Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest. 2020;130:4871–87.PubMedPubMedCentralCrossRef Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest. 2020;130:4871–87.PubMedPubMedCentralCrossRef
46.
go back to reference Lebedev TD, Khabusheva ER, Mareeva SR, Ivanenko KA, Morozov AV, Spirin PV, et al. Identification of cell type-specific correlations between ERK activity and cell viability upon treatment with ERK1/2 inhibitors. J Biol Chem. 2022;298:102226.PubMedPubMedCentralCrossRef Lebedev TD, Khabusheva ER, Mareeva SR, Ivanenko KA, Morozov AV, Spirin PV, et al. Identification of cell type-specific correlations between ERK activity and cell viability upon treatment with ERK1/2 inhibitors. J Biol Chem. 2022;298:102226.PubMedPubMedCentralCrossRef
47.
go back to reference Chen JY, Lin JR, Tsai FC, Meyer T. Dosage of Dyrk1a shifts cells within a p21-cyclin D1 signaling map to control the decision to enter the cell cycle. Mol Cell. 2013;52:87–100.PubMedPubMedCentralCrossRef Chen JY, Lin JR, Tsai FC, Meyer T. Dosage of Dyrk1a shifts cells within a p21-cyclin D1 signaling map to control the decision to enter the cell cycle. Mol Cell. 2013;52:87–100.PubMedPubMedCentralCrossRef
48.
go back to reference Xie W, Wang K, Su D, Paterson AJ, Kudlow JE. MDA468 growth inhibition by EGF is associated with the induction of the cyclin-dependent kinase inhibitor p21WAF1. Anticancer Res. 1997;17:2627–33. PubMed Xie W, Wang K, Su D, Paterson AJ, Kudlow JE. MDA468 growth inhibition by EGF is associated with the induction of the cyclin-dependent kinase inhibitor p21WAF1. Anticancer Res. 1997;17:2627–33. PubMed
49.
go back to reference Flørenes VA, Lu JRC, Bhattacharya L, Sheehan C, Slingerland JM, Kerbel RS. Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. Oncogene. 1999;18:1023–32. PubMedCrossRef Flørenes VA, Lu JRC, Bhattacharya L, Sheehan C, Slingerland JM, Kerbel RS. Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. Oncogene. 1999;18:1023–32. PubMedCrossRef
50.
go back to reference Moran DM, Mattocks MA, Cahill PA, Koniaris LG, McKillop IH. Interleukin-6 mediates G(0)/G(1) growth arrest in hepatocellular carcinoma through a STAT 3-dependent pathway. J Surg Res. 2008;147:23–33. PubMedCrossRef Moran DM, Mattocks MA, Cahill PA, Koniaris LG, McKillop IH. Interleukin-6 mediates G(0)/G(1) growth arrest in hepatocellular carcinoma through a STAT 3-dependent pathway. J Surg Res. 2008;147:23–33. PubMedCrossRef
51.
go back to reference Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells. 2020;12:481–7.PubMedPubMedCentralCrossRef Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells. 2020;12:481–7.PubMedPubMedCentralCrossRef
52.
go back to reference Chi F, Liu J, Brady SW, Cosgrove PA, Nath A, McQuerry JA, et al. A `one-two punch’ therapy strategy to target chemoresistance in estrogen receptor positive breast cancer. Transl Oncol. 2021;14:100946.PubMedCrossRef Chi F, Liu J, Brady SW, Cosgrove PA, Nath A, McQuerry JA, et al. A `one-two punch’ therapy strategy to target chemoresistance in estrogen receptor positive breast cancer. Transl Oncol. 2021;14:100946.PubMedCrossRef
53.
go back to reference Xue WJ, Li MT, Chen L, Sun LP, Li YY. Recent developments and advances of FGFR as a potential target in cancer. Future Med Chem. 2018;10:2109–26.PubMedCrossRef Xue WJ, Li MT, Chen L, Sun LP, Li YY. Recent developments and advances of FGFR as a potential target in cancer. Future Med Chem. 2018;10:2109–26.PubMedCrossRef
54.
go back to reference Chew NJ, Lim Kam Sian TCC, Nguyen EV, Shin SY, Yang J, Hui MN, et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 2021;23:82.PubMedPubMedCentralCrossRef Chew NJ, Lim Kam Sian TCC, Nguyen EV, Shin SY, Yang J, Hui MN, et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 2021;23:82.PubMedPubMedCentralCrossRef
55.
go back to reference De Luca A, Frezzetti D, Gallo M, Normanno N. FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin Investig Drugs. 2017;26:303–11.PubMedCrossRef De Luca A, Frezzetti D, Gallo M, Normanno N. FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin Investig Drugs. 2017;26:303–11.PubMedCrossRef
56.
go back to reference Mao P, Cohen O, Kowalski KJ, Kusiel JG, Buendia-Buendia JE, Cuoco MS, et al. Acquired FGFR and FGF alterations Confer Resistance to Estrogen receptor (ER) targeted therapy in ER + metastatic breast Cancer. Clin Cancer Res. 2020;26:5974–89.PubMedCrossRef Mao P, Cohen O, Kowalski KJ, Kusiel JG, Buendia-Buendia JE, Cuoco MS, et al. Acquired FGFR and FGF alterations Confer Resistance to Estrogen receptor (ER) targeted therapy in ER + metastatic breast Cancer. Clin Cancer Res. 2020;26:5974–89.PubMedCrossRef
57.
go back to reference Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting aberrant FGFR signaling to overcome CDK4/6 inhibitor resistance in breast Cancer. 2021; 10:293. Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting aberrant FGFR signaling to overcome CDK4/6 inhibitor resistance in breast Cancer. 2021; 10:293.
58.
go back to reference Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.PubMedCrossRef Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.PubMedCrossRef
59.
go back to reference Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1–3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and doseexpansion study. J Clin Oncol. 2017;35:157–65.PubMedCrossRef Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1–3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and doseexpansion study. J Clin Oncol. 2017;35:157–65.PubMedCrossRef
60.
go back to reference Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005;15:365–77.PubMedCrossRef Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005;15:365–77.PubMedCrossRef
61.
go back to reference Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D cell Culture systems for personalizing Anti-cancer therapies. Front Oncol. 2021;11:782766.PubMedPubMedCentralCrossRef Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D cell Culture systems for personalizing Anti-cancer therapies. Front Oncol. 2021;11:782766.PubMedPubMedCentralCrossRef
62.
go back to reference Cheng Q, Ma Z, Shi Y, Parris AB, Kong L, Yang X. FGFR1 overexpression induces Cancer Cell Stemness and enhanced Akt/Erk-ER signaling to promote Palbociclib Resistance in Luminal a breast Cancer cells. Cells. 2021;10:3008.PubMedPubMedCentralCrossRef Cheng Q, Ma Z, Shi Y, Parris AB, Kong L, Yang X. FGFR1 overexpression induces Cancer Cell Stemness and enhanced Akt/Erk-ER signaling to promote Palbociclib Resistance in Luminal a breast Cancer cells. Cells. 2021;10:3008.PubMedPubMedCentralCrossRef
63.
go back to reference Feng W, Gao M, Yang M, Li X, Gan Z, Wu T, Lin Y, He T. TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. Med Oncol. 2022;39:230.PubMedCrossRef Feng W, Gao M, Yang M, Li X, Gan Z, Wu T, Lin Y, He T. TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. Med Oncol. 2022;39:230.PubMedCrossRef
64.
go back to reference Jin W. Role of JAK/STAT3 signaling in the regulation of Metastasis, the transition of Cancer Stem cells, and Chemoresistance of Cancer by epithelial-mesenchymal transition. Cells. 2020;9:217.PubMedPubMedCentralCrossRef Jin W. Role of JAK/STAT3 signaling in the regulation of Metastasis, the transition of Cancer Stem cells, and Chemoresistance of Cancer by epithelial-mesenchymal transition. Cells. 2020;9:217.PubMedPubMedCentralCrossRef
65.
go back to reference Lo UG, Chen YA, Cen J, Deng S, Luo J, Zhau H, et al. The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med. 2022;12:e978.PubMedPubMedCentralCrossRef Lo UG, Chen YA, Cen J, Deng S, Luo J, Zhau H, et al. The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med. 2022;12:e978.PubMedPubMedCentralCrossRef
66.
Metadata
Title
Paradoxical cancer cell proliferation after FGFR inhibition through decreased p21 signaling in FGFR1-amplified breast cancer cells
Authors
Feng Chi
Jason I. Griffiths
Aritro Nath
Andrea H. Bild
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2024
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-024-01808-7

Other articles of this Issue 1/2024

Breast Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine