Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

18FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological parameters and PET image-derived indices including tumor texture analysis

Authors: David Groheux, Antoine Martineau, Luis Teixeira, Marc Espié, Patricia de Cremoux, Philippe Bertheau, Pascal Merlet, Charles Lemarignier

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

This study investigated the value of some clinicopathological parameters and 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) indices, including textural features, to predict event-free survival (EFS) in estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) locally advanced breast cancer (BC) patients.

Methods

FDG-PET/CT indices and clinicopathological parameters were assessed before neoadjuvant chemotherapy (NAC). After completion of chemotherapy, all patients had breast surgery with axillary lymph node dissection, followed by radiation therapy and endocrine therapy for 5 years. EFS was estimated using the Kaplan-Meier method. A Cox proportional hazard regression model was used for multivariate analysis.

Results

One hundred forty-three consecutive patients with stage II–III ER+/HER2- BC and without distant metastases at baseline PET were included. High standardized uptake values (SUVs), were associated with shorter EFS (HR = 3.51, P < 0.01 for SUVmax; HR = 2.76, P = 0.02 for SUVmean; and HR = 4.40 P < 0.01 for SUVpeak). Metabolically active tumor volume (MATV, HR = 3.47, P < 0.01) and total lesion glycolysis (TLG, HR = 3.10, P < 0.01) were also predictive of EFS. Homogeneity was not predictive (HR = 2.27, P = 0.07) and entropy had weak prediction (HR = 2.89, P = 0.02). Among clinicopathological parameters, EFS was shorter in progesterone receptor (PR)-negative tumor (vs. PR-positive tumor; HR = 3.25, P < 0.01); histology was predictive of EFS (lobular vs. ductal invasive carcinoma; HR = 3.74, P = 0.01) but not tumor grade (grade 3 vs. grade 1–2; HR = 1.64, P = 0.32). Pathological complete response after NAC was not correlated to the risk of relapse. Three parameters remained significantly associated with EFS in multivariate analysis. MATV (HR = 1.01, P < 0.01), progesterone receptor expression (HR = 2.90, P = 0.03) and tumor histology (HR = 3.80, P = 0.02).

Conclusions

Baseline PET parameters measured before neoadjuvant treatment have prognostic values in ER+/HER2- locally advanced breast cancer patients. After multivariate analysis, metabolically active tumor volume remains significant while textural analysis of PET images is not of added value. Considering histopathological parameters, our study shows that patients with PR-negative or lobular invasive tumor have poorer prognosis than patients with PR-positive or ductal carcinoma, respectively.
Literature
1.
go back to reference Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72.CrossRefPubMed Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72.CrossRefPubMed
2.
go back to reference Groheux D, Giacchetti S, Moretti J-L, et al. Correlation of high (18)F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–35.CrossRefPubMed Groheux D, Giacchetti S, Moretti J-L, et al. Correlation of high (18)F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–35.CrossRefPubMed
3.
go back to reference Humbert O, Berriolo-Riedinger A, Cochet A, et al. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using (18)F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging. 2014;41:416–27.CrossRefPubMed Humbert O, Berriolo-Riedinger A, Cochet A, et al. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using (18)F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging. 2014;41:416–27.CrossRefPubMed
4.
go back to reference Aogi K, Kadoya T, Sugawara Y, et al. Utility of (18)F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat. 2015;150:209–17.CrossRefPubMedPubMedCentral Aogi K, Kadoya T, Sugawara Y, et al. Utility of (18)F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat. 2015;150:209–17.CrossRefPubMedPubMedCentral
5.
go back to reference Groheux D, Sanna A, Majdoub M, et al. Baseline tumor 18 F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2- breast cancer. J Nucl Med. 2015;56:824–31.CrossRefPubMed Groheux D, Sanna A, Majdoub M, et al. Baseline tumor 18 F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2- breast cancer. J Nucl Med. 2015;56:824–31.CrossRefPubMed
6.
go back to reference Hatt M, Groheux D, Martineau A, et al. Comparison between 18 F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–9.CrossRefPubMed Hatt M, Groheux D, Martineau A, et al. Comparison between 18 F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–9.CrossRefPubMed
7.
go back to reference Groheux D, Hatt M, Hindié E, et al. Estrogen receptor-positive/human epidermal growth factor receptor 2-negative breast tumors: early prediction of chemosensitivity with (18) F-fluorodeoxyglucose positron emission tomography/computed tomography during neoadjuvant chemotherapy. Cancer. 2013;119:1960–8.CrossRefPubMed Groheux D, Hatt M, Hindié E, et al. Estrogen receptor-positive/human epidermal growth factor receptor 2-negative breast tumors: early prediction of chemosensitivity with (18) F-fluorodeoxyglucose positron emission tomography/computed tomography during neoadjuvant chemotherapy. Cancer. 2013;119:1960–8.CrossRefPubMed
8.
go back to reference Groheux D, Majdoub M, Sanna A, et al. Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology. 2015;277:358–71.CrossRefPubMed Groheux D, Majdoub M, Sanna A, et al. Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology. 2015;277:358–71.CrossRefPubMed
9.
go back to reference Soussan M, Orlhac F, Boubaya M, et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One. 2014;9:e94017.CrossRefPubMedPubMedCentral Soussan M, Orlhac F, Boubaya M, et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One. 2014;9:e94017.CrossRefPubMedPubMedCentral
10.
go back to reference Son SH, Kim D-H, Hong CM, et al. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer. 2014;14:585.CrossRefPubMedPubMedCentral Son SH, Kim D-H, Hong CM, et al. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer. 2014;14:585.CrossRefPubMedPubMedCentral
11.
go back to reference Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.CrossRefPubMed Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.CrossRefPubMed
12.
go back to reference Daisne J-F, Sibomana M, Bol A, et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.CrossRefPubMed Daisne J-F, Sibomana M, Bol A, et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.CrossRefPubMed
13.
go back to reference Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.CrossRefPubMedPubMedCentral Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.CrossRefPubMedPubMedCentral
14.
go back to reference Orlhac F, Soussan M, Maisonobe J-A, et al. Tumor texture analysis in 18 F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed Orlhac F, Soussan M, Maisonobe J-A, et al. Tumor texture analysis in 18 F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed
15.
go back to reference Tixier F, Hatt M, Le Rest CC, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18 F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentral Tixier F, Hatt M, Le Rest CC, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18 F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentral
16.
go back to reference Cook GJR, O’Brien ME, Siddique M, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRefPubMed Cook GJR, O’Brien ME, Siddique M, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRefPubMed
17.
go back to reference Schwarz-Dose J, Untch M, Tiling R, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18 F]fluorodeoxyglucose. J Clin Oncol. 2009;27:535–41.CrossRefPubMed Schwarz-Dose J, Untch M, Tiling R, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18 F]fluorodeoxyglucose. J Clin Oncol. 2009;27:535–41.CrossRefPubMed
18.
go back to reference Specht JM, Kurland BF, Montgomery SK, et al. Tumor metabolism and blood flow as assessed by positron emission tomography varies by tumor subtype in locally advanced breast cancer. Clin Cancer Res. 2010;16:2803–10.CrossRefPubMedPubMedCentral Specht JM, Kurland BF, Montgomery SK, et al. Tumor metabolism and blood flow as assessed by positron emission tomography varies by tumor subtype in locally advanced breast cancer. Clin Cancer Res. 2010;16:2803–10.CrossRefPubMedPubMedCentral
19.
go back to reference Cancello G, Maisonneuve P, Rotmensz N, et al. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Ann Oncol. 2013;24:661–8.CrossRefPubMed Cancello G, Maisonneuve P, Rotmensz N, et al. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Ann Oncol. 2013;24:661–8.CrossRefPubMed
20.
go back to reference Loibl S, Volz C, Mau C, et al. Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat. 2014;144:153–62.CrossRefPubMed Loibl S, Volz C, Mau C, et al. Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat. 2014;144:153–62.CrossRefPubMed
21.
go back to reference Adachi Y, Ishiguro J, Kotani H, et al. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:248.CrossRefPubMedPubMedCentral Adachi Y, Ishiguro J, Kotani H, et al. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:248.CrossRefPubMedPubMedCentral
22.
go back to reference Tateishi U, Miyake M, Nagaoka T, et al. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging--prospective assessment. Radiology. 2012;263:53–63.CrossRefPubMed Tateishi U, Miyake M, Nagaoka T, et al. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging--prospective assessment. Radiology. 2012;263:53–63.CrossRefPubMed
23.
go back to reference Groheux D, Giacchetti S, Espié M, et al. Early monitoring of response to neoadjuvant chemotherapy in breast cancer with (18)F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging. 2011;38:419–25.CrossRefPubMed Groheux D, Giacchetti S, Espié M, et al. Early monitoring of response to neoadjuvant chemotherapy in breast cancer with (18)F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging. 2011;38:419–25.CrossRefPubMed
24.
go back to reference Groheux D, Giacchetti S, Hatt M, et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer. 2013;109:1157–64.CrossRefPubMedPubMedCentral Groheux D, Giacchetti S, Hatt M, et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer. 2013;109:1157–64.CrossRefPubMedPubMedCentral
25.
go back to reference Gebhart G, Gámez C, Holmes E, et al. 18 F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med. 2013;54:1862–8.CrossRefPubMed Gebhart G, Gámez C, Holmes E, et al. 18 F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med. 2013;54:1862–8.CrossRefPubMed
26.
go back to reference Groheux D, Mankoff D, Espié M, et al. (18)F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials. Eur J Nucl Med Mol Imaging. 2016;43:983–93.CrossRefPubMed Groheux D, Mankoff D, Espié M, et al. (18)F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials. Eur J Nucl Med Mol Imaging. 2016;43:983–93.CrossRefPubMed
27.
go back to reference Dunnwald LK, Gralow JR, Ellis GK, et al. Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008;26:4449–57.CrossRefPubMedPubMedCentral Dunnwald LK, Gralow JR, Ellis GK, et al. Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008;26:4449–57.CrossRefPubMedPubMedCentral
28.
go back to reference van Kruchten M, de Vries EGE, Brown M, et al. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013;14:e465–75.CrossRefPubMed van Kruchten M, de Vries EGE, Brown M, et al. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013;14:e465–75.CrossRefPubMed
Metadata
Title
18FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological parameters and PET image-derived indices including tumor texture analysis
Authors
David Groheux
Antoine Martineau
Luis Teixeira
Marc Espié
Patricia de Cremoux
Philippe Bertheau
Pascal Merlet
Charles Lemarignier
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-016-0793-2

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine