Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Heart Surgery | Research

Postoperative hypotension in patients discharged to the intensive care unit after non-cardiac surgery is associated with adverse clinical outcomes

Authors: Nathan J. Smischney, Andrew D. Shaw, Wolf H. Stapelfeldt, Isabel J. Boero, Qinyu Chen, Mitali Stevens, Ashish K. Khanna

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

The postoperative period is critical for a patient’s recovery, and postoperative hypotension, specifically, is associated with adverse clinical outcomes and significant harm to the patient. However, little is known about the association between postoperative hypotension in patients in the intensive care unit (ICU) after non-cardiac surgery, and morbidity and mortality, specifically among patients who did not experience intraoperative hypotension. The goal of this study was to assess the impact of postoperative hypotension at various absolute hemodynamic thresholds (≤ 75, ≤ 65 and ≤ 55 mmHg), in the absence of intraoperative hypotension (≤ 65 mmHg), on outcomes among patients in the ICU following non-cardiac surgery.

Methods

This multi-center retrospective cohort study included specific patient procedures from Optum® healthcare database for patients without intraoperative hypotension (MAP ≤ 65 mmHg) discharged to the ICU for ≥ 48 h after non-cardiac surgery with valid mean arterial pressure (MAP) readings. A total of 3185 procedures were included in the final cohort, and the association between postoperative hypotension and the primary outcome, 30-day major adverse cardiac or cerebrovascular events, was assessed. Secondary outcomes examined included all-cause 30- and 90-day mortality, 30-day acute myocardial infarction, 30-day acute ischemic stroke, 7-day acute kidney injury stage II/III and 7-day continuous renal replacement therapy/dialysis.

Results

Postoperative hypotension in the ICU was associated with an increased risk of 30-day major adverse cardiac or cerebrovascular events at MAP ≤ 65 mmHg (hazard ratio [HR] 1.52; 98.4% confidence interval [CI] 1.17–1.96) and ≤ 55 mmHg (HR 2.02, 98.4% CI 1.50–2.72). Mean arterial pressures of ≤ 65 mmHg and ≤ 55 mmHg were also associated with higher 30-day mortality (MAP ≤ 65 mmHg, [HR 1.56, 98.4% CI 1.22–2.00]; MAP ≤ 55 mmHg, [HR 1.97, 98.4% CI 1.48–2.60]) and 90-day mortality (MAP ≤ 65 mmHg, [HR 1.49, 98.4% CI 1.20–1.87]; MAP ≤ 55 mmHg, [HR 1.78, 98.4% CI 1.38–2.31]). Furthermore, we found an association between postoperative hypotension with MAP ≤ 55 mmHg and acute kidney injury stage II/III (HR 1.68, 98.4% CI 1.02–2.77). No associations were seen between postoperative hypotension and 30-day readmissions, 30-day acute myocardial infarction, 30-day acute ischemic stroke and 7-day continuous renal replacement therapy/dialysis for any MAP threshold.

Conclusions

Postoperative hypotension in critical care patients with MAP ≤ 65 mmHg is associated with adverse events even without experiencing intraoperative hypotension.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vasquez SM, et al. Period-dependent Associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology. 2018;128(2):317–27.CrossRef Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vasquez SM, et al. Period-dependent Associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology. 2018;128(2):317–27.CrossRef
2.
go back to reference Sessler DI, Khanna AK. Perioperative myocardial injury and the contribution of hypotension. Intensive Care Med. 2018;44(6):811–22.CrossRef Sessler DI, Khanna AK. Perioperative myocardial injury and the contribution of hypotension. Intensive Care Med. 2018;44(6):811–22.CrossRef
3.
go back to reference Bartels K, Karhausen J, Clambey ET, Grenz A, Eltzschig HK. Perioperative organ injury. Anesthesiology. 2013;119(6):1474–89.CrossRef Bartels K, Karhausen J, Clambey ET, Grenz A, Eltzschig HK. Perioperative organ injury. Anesthesiology. 2013;119(6):1474–89.CrossRef
4.
go back to reference Writing Committee for the VISION Study Investigators, Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642–51.CrossRef Writing Committee for the VISION Study Investigators, Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642–51.CrossRef
5.
go back to reference Timmers TK, Verhofstad MH, Moons KG, van Beeck EF, Leenen LP. Long-term quality of life after surgical intensive care admission. Arch Surg. 2011;146(4):412–8.CrossRef Timmers TK, Verhofstad MH, Moons KG, van Beeck EF, Leenen LP. Long-term quality of life after surgical intensive care admission. Arch Surg. 2011;146(4):412–8.CrossRef
6.
go back to reference van Lier F, Wesdorp F, Liem VGB, Potters JW, Grune F, Boersma H, et al. Association between postoperative mean arterial blood pressure and myocardial injury after noncardiac surgery. Br J Anaesth. 2018;120(1):77–83.CrossRef van Lier F, Wesdorp F, Liem VGB, Potters JW, Grune F, Boersma H, et al. Association between postoperative mean arterial blood pressure and myocardial injury after noncardiac surgery. Br J Anaesth. 2018;120(1):77–83.CrossRef
7.
go back to reference Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, Badani H, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44(6):857–67.CrossRef Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, Badani H, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44(6):857–67.CrossRef
8.
go back to reference Khanna AK, Maheshwari K, Mao G, Liu L, Perez-Protto SE, Chodavarapu P, et al. Association between mean arterial pressure and acute kidney injury and a composite of myocardial injury and mortality in postoperative critically Ill patients: a retrospective cohort analysis. Crit Care Med. 2019;47(7):910–7.CrossRef Khanna AK, Maheshwari K, Mao G, Liu L, Perez-Protto SE, Chodavarapu P, et al. Association between mean arterial pressure and acute kidney injury and a composite of myocardial injury and mortality in postoperative critically Ill patients: a retrospective cohort analysis. Crit Care Med. 2019;47(7):910–7.CrossRef
9.
go back to reference Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA. 2020;323(11):1052–60.CrossRef Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA. 2020;323(11):1052–60.CrossRef
10.
go back to reference Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318(14):1346–57.CrossRef Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318(14):1346–57.CrossRef
11.
go back to reference Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, et al. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interact Cardiovasc Thoracic Surg. 2016;22(4):445–51.CrossRef Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, et al. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interact Cardiovasc Thoracic Surg. 2016;22(4):445–51.CrossRef
12.
go back to reference Wallace PJ, Shah ND, Dennen T, Bleicher PA, Crown WH. Optum labs: building a novel node in the learning health care system. Health Aff. 2014;33(7):1187–94.CrossRef Wallace PJ, Shah ND, Dennen T, Bleicher PA, Crown WH. Optum labs: building a novel node in the learning health care system. Health Aff. 2014;33(7):1187–94.CrossRef
13.
go back to reference Gregory A, Stapelfeldt WH, Khan A, Smischney NJ, Boero I, Chen Q, et al. Intraoperative hypotension is associated with adverse clinical outcomes after non-cardiac surgery (in Submission). 2019. Gregory A, Stapelfeldt WH, Khan A, Smischney NJ, Boero I, Chen Q, et al. Intraoperative hypotension is associated with adverse clinical outcomes after non-cardiac surgery (in Submission). 2019.
14.
go back to reference Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126(1):47–65.CrossRef Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126(1):47–65.CrossRef
15.
go back to reference Wesselink EM, Kappen TH, Torn HM, Slooter AJC, van Klei WA. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018;121(4):706–21.CrossRef Wesselink EM, Kappen TH, Torn HM, Slooter AJC, van Klei WA. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018;121(4):706–21.CrossRef
18.
go back to reference Khanna AK, Shaw AD, Stapelfeldt WH, Boero IJ, Chen Q, Stevens M, et al. Postoperative hypotension is associated with adverse clinical outcomes in patients without intraoperative hypotension, after non-cardiac surgery (in submission). 2020. Khanna AK, Shaw AD, Stapelfeldt WH, Boero IJ, Chen Q, Stevens M, et al. Postoperative hypotension is associated with adverse clinical outcomes in patients without intraoperative hypotension, after non-cardiac surgery (in submission). 2020.
19.
go back to reference Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRef Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRef
20.
go back to reference Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2017;2(2):181–7.CrossRef Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2017;2(2):181–7.CrossRef
21.
go back to reference Xia J, Xu J, Li B, Liu Z, Hao H, Yin C, et al. Association between glycemic variability and major adverse cardiovascular and cerebrovascular events (MACCE) in patients with acute coronary syndrome during 30-day follow-up. Clin Chim Acta. 2017;466:162–6.CrossRef Xia J, Xu J, Li B, Liu Z, Hao H, Yin C, et al. Association between glycemic variability and major adverse cardiovascular and cerebrovascular events (MACCE) in patients with acute coronary syndrome during 30-day follow-up. Clin Chim Acta. 2017;466:162–6.CrossRef
22.
go back to reference Ham SY, Song SW, Nam SB, Park SJ, Kim S, Song Y. Effects of chronic statin use on 30-day major adverse cardiac and cerebrovascular events after thoracic endovascular aortic repair. J Cardiovasc Surg (Torino). 2018;59(6):836–43. Ham SY, Song SW, Nam SB, Park SJ, Kim S, Song Y. Effects of chronic statin use on 30-day major adverse cardiac and cerebrovascular events after thoracic endovascular aortic repair. J Cardiovasc Surg (Torino). 2018;59(6):836–43.
23.
go back to reference Koeze J, Keus F, Dieperink W, van der Horst ICC, Zijlstra JG, van Meurs M. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 2017;18(1):70.CrossRef Koeze J, Keus F, Dieperink W, van der Horst ICC, Zijlstra JG, van Meurs M. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 2017;18(1):70.CrossRef
24.
go back to reference Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.CrossRef Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.CrossRef
25.
go back to reference Ostermann M, Chang R. Correlation between the AKI classification and outcome. Crit Care (London, England). 2008;12(6):R144.CrossRef Ostermann M, Chang R. Correlation between the AKI classification and outcome. Crit Care (London, England). 2008;12(6):R144.CrossRef
26.
go back to reference Russell JA, Lee T, Singer J, De Backer D, Annane D. Days alive and free as an alternative to a mortality outcome in pivotal vasopressor and septic shock trials. J Crit Care. 2018;47:333–7.CrossRef Russell JA, Lee T, Singer J, De Backer D, Annane D. Days alive and free as an alternative to a mortality outcome in pivotal vasopressor and septic shock trials. J Crit Care. 2018;47:333–7.CrossRef
27.
go back to reference Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509.CrossRef Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509.CrossRef
28.
go back to reference VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167(4):268.CrossRef VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167(4):268.CrossRef
29.
go back to reference Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRef Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRef
30.
go back to reference Lobo SM, Rezende E, Knibel MF, Silva NB, Páramo JA, Nácul FE, et al. Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg. 2011;112(4):877–83.CrossRef Lobo SM, Rezende E, Knibel MF, Silva NB, Páramo JA, Nácul FE, et al. Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg. 2011;112(4):877–83.CrossRef
31.
go back to reference Mukhopadhyay A, Tai BC, See KC, Ng WY, Lim TK, Onsiong S, et al. Risk factors for hospital and long-term mortality of critically ill elderly patients admitted to an intensive care unit. Biomed Res Int. 2014;2014:960575.CrossRef Mukhopadhyay A, Tai BC, See KC, Ng WY, Lim TK, Onsiong S, et al. Risk factors for hospital and long-term mortality of critically ill elderly patients admitted to an intensive care unit. Biomed Res Int. 2014;2014:960575.CrossRef
32.
go back to reference Rydenfelt K, Engerström L, Walther S, Sjöberg F, Strömberg U, Samuelsson C. In-hospital vs. 30-day mortality in the critically ill—a 2-year Swedish intensive care cohort analysis. Acta Anaesthesiol Scand. 2015;59(7):846–58.CrossRef Rydenfelt K, Engerström L, Walther S, Sjöberg F, Strömberg U, Samuelsson C. In-hospital vs. 30-day mortality in the critically ill—a 2-year Swedish intensive care cohort analysis. Acta Anaesthesiol Scand. 2015;59(7):846–58.CrossRef
33.
go back to reference Orban J-C, Walrave Y, Mongardon N, Allaouchiche B, Argaud L, Aubrun F, et al. Causes and characteristics of death in intensive care units: a prospective multicenter study. Anesthesiology. 2017;126(5):882–9.CrossRef Orban J-C, Walrave Y, Mongardon N, Allaouchiche B, Argaud L, Aubrun F, et al. Causes and characteristics of death in intensive care units: a prospective multicenter study. Anesthesiology. 2017;126(5):882–9.CrossRef
34.
go back to reference Abelha FJ, Castro MA, Landeiro NM, Neves AM, Santos CC. Mortality and length of stay in a surgical intensive care unit. Rev Bras Anestesiol. 2006;56(1):34–45.CrossRef Abelha FJ, Castro MA, Landeiro NM, Neves AM, Santos CC. Mortality and length of stay in a surgical intensive care unit. Rev Bras Anestesiol. 2006;56(1):34–45.CrossRef
35.
go back to reference Asfar P, Radermacher P, Ostermann M. MAP of 65: target of the past? Intensive Care Med. 2018;44(9):1551–2.CrossRef Asfar P, Radermacher P, Ostermann M. MAP of 65: target of the past? Intensive Care Med. 2018;44(9):1551–2.CrossRef
36.
go back to reference Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323:938–49.CrossRef Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323:938–49.CrossRef
37.
go back to reference Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.CrossRef Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.CrossRef
38.
go back to reference Turan A, Cohen B, Adegboye J, Makarova N, Liu L, Mascha EJ, et al. Mild acute kidney injury after noncardiac surgery is associated with long-term renal dysfunction: a retrospective cohort study. Anesthesiology. 2020;132(5):1053–61.CrossRef Turan A, Cohen B, Adegboye J, Makarova N, Liu L, Mascha EJ, et al. Mild acute kidney injury after noncardiac surgery is associated with long-term renal dysfunction: a retrospective cohort study. Anesthesiology. 2020;132(5):1053–61.CrossRef
Metadata
Title
Postoperative hypotension in patients discharged to the intensive care unit after non-cardiac surgery is associated with adverse clinical outcomes
Authors
Nathan J. Smischney
Andrew D. Shaw
Wolf H. Stapelfeldt
Isabel J. Boero
Qinyu Chen
Mitali Stevens
Ashish K. Khanna
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03412-5

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue