Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Cardiopulmonary Resuscitation | Research

A meta-analysis of the resuscitative effects of mechanical and manual chest compression in out-of-hospital cardiac arrest patients

Authors: Ni Zhu, Qi Chen, Zhixia Jiang, Futuan Liao, Bujin Kou, Hui Tang, Manhong Zhou

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Objectives

To evaluate the resuscitative effects of mechanical and manual chest compression in patients with out-of-hospital cardiac arrest (OHCA).

Methods

All randomized controlled and cohort studies comparing the effects of mechanical compression and manual compression on cardiopulmonary resuscitation in OHCA patients were retrieved from the Cochrane Library, PubMed, EMBASE, and Ovid databases from the date of their establishment to January 14, 2019. The included outcomes were as follows: the return of spontaneous circulation (ROSC) rate, the rate of survival to hospital admission, the rate of survival to hospital discharge, and neurological function. After evaluating the quality of the studies and summarizing the results, RevMan5.3 software was used for the meta-analysis.

Results

In total, 15 studies (9 randomized controlled trials and 6 cohort studies) were included. The results of the meta-analysis showed that there were no significant differences in the resuscitative effects of mechanical and manual chest compression in terms of the ROSC rate, the rate of survival to hospital admission and survival to hospital discharge, and neurological function in OHCA patients (ROSC: RCT: OR = 1.12, 95% CI (0.90, 1.39), P = 0.31; cohort study: OR = 1.08, 95% CI (0.85, 1.36), P = 0.54; survival to hospital admission: RCT: OR = 0.95, 95% CI (0.75, 1.20), P = 0.64; cohort study: OR = 0.98 95% CI (0.79, 1.20), P = 0.82; survival to hospital discharge: RCT: OR = 0.87, 95% CI (0.68, 1.10), P = 0.24; cohort study: OR = 0.78, 95% CI (0.53, 1.16), P = 0.22; Cerebral Performance Category (CPC) score: RCT: OR = 0.88, 95% CI (0.64, 1.20), P = 0.41; cohort study: OR = 0.68, 95% CI (0.34, 1.37), P = 0.28). When the mechanical compression group was divided into Lucas and Autopulse subgroups, the Lucas subgroup showed no difference from the manual compression group in ROSC, survival to admission, survival to discharge, and CPC scores; the Autopulse subgroup showed no difference from the manual compression subgroup in ROSC, survival to discharge, and CPC scores.

Conclusion

There were no significant differences in resuscitative effects between mechanical and manual chest compression in OHCA patients. To ensure the quality of CPR, we suggest that manual chest compression be applied in the early stage of CPR for OHCA patients, while mechanical compression can be used as part of advanced life support in the late stage.
Literature
1.
go back to reference Idris AH, Guffey D, Pepe PP, et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015;43(4):840–8.CrossRef Idris AH, Guffey D, Pepe PP, et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015;43(4):840–8.CrossRef
2.
go back to reference Stiell IG, Brown SP, Christenson J, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40:1192–8.5.CrossRef Stiell IG, Brown SP, Christenson J, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40:1192–8.5.CrossRef
3.
go back to reference Kouw Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S414–435.64–1067.CrossRef Kouw Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S414–435.64–1067.CrossRef
4.
go back to reference Hightower D, Thomas SH, Stone CK, Dunn K, March JA. Decay in quality of closed-chest compressions over time. Ann Emerg Med. 1995;26(3):300–3.CrossRef Hightower D, Thomas SH, Stone CK, Dunn K, March JA. Decay in quality of closed-chest compressions over time. Ann Emerg Med. 1995;26(3):300–3.CrossRef
5.
go back to reference Lurie K. Mechanical devices for cardiopulmonary resuscitation: an update. Emerg Med Clin North Am. 2002;20(4):771–84.CrossRef Lurie K. Mechanical devices for cardiopulmonary resuscitation: an update. Emerg Med Clin North Am. 2002;20(4):771–84.CrossRef
6.
go back to reference Ikeno F, Kaneda H, Hongo Y, Sakanoue Y, Nolasco C, Emami S, et al. Augmentation of tissue perfusion by a novel compression device increases neurological intact survival in porcine model of prolonged cardiac arrest. Resuscitation. 2006;68:109–18.CrossRef Ikeno F, Kaneda H, Hongo Y, Sakanoue Y, Nolasco C, Emami S, et al. Augmentation of tissue perfusion by a novel compression device increases neurological intact survival in porcine model of prolonged cardiac arrest. Resuscitation. 2006;68:109–18.CrossRef
7.
go back to reference Halperin H, Paradis N, Ornato J. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214–20.CrossRef Halperin H, Paradis N, Ornato J. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214–20.CrossRef
8.
go back to reference Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. 2005;9:61–7.CrossRef Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. 2005;9:61–7.CrossRef
9.
go back to reference Westfall M, Krantz S, Mullin C, Kaufman C. Mechanical versus manual chest compressions in out-of-hospital cardiac arrest: a meta-analysis. Crit Care Med. 2013;41(7):1782–9.CrossRef Westfall M, Krantz S, Mullin C, Kaufman C. Mechanical versus manual chest compressions in out-of-hospital cardiac arrest: a meta-analysis. Crit Care Med. 2013;41(7):1782–9.CrossRef
10.
go back to reference Ong ME, Mackey KE, Zhang ZC, Tanaka H, Ma MH, Swor R. Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review. Scand J Trauma Resusc Emerg Med. 2012;20:39.CrossRef Ong ME, Mackey KE, Zhang ZC, Tanaka H, Ma MH, Swor R. Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review. Scand J Trauma Resusc Emerg Med. 2012;20:39.CrossRef
11.
go back to reference Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:CD007260. Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:CD007260.
12.
go back to reference Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016;24:10.CrossRef Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016;24:10.CrossRef
13.
go back to reference Khan SU, Lone AN, Talluri S, Khan MZ, Khan MU, Kaluski E. Efficacy and safety of mechanical versus manual compression in cardiac arrest - A Bayesian network meta-analysis. Resuscitation. 2018;130:182–8. Khan SU, Lone AN, Talluri S, Khan MZ, Khan MU, Kaluski E. Efficacy and safety of mechanical versus manual compression in cardiac arrest - A Bayesian network meta-analysis. Resuscitation. 2018;130:182–8.
14.
go back to reference Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. Available from www.handbook.cochrane.org. Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. Available from www.​handbook.​cochrane.​org.
15.
go back to reference Dickinson ET, Verdile VP, Schneider RM, Salluzzo RF. Effectiveness of mechanical versus manual chest compressions in out-of-hospital cardiac arrest resuscitation: a pilot study. Am J Emerg Med. 1998;16(3):289–92.CrossRef Dickinson ET, Verdile VP, Schneider RM, Salluzzo RF. Effectiveness of mechanical versus manual chest compressions in out-of-hospital cardiac arrest resuscitation: a pilot study. Am J Emerg Med. 1998;16(3):289–92.CrossRef
16.
go back to reference Hallstrom A, Rea TD, Sayre MR, Christenson J, Anton AR, Mosesso VN Jr. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. J Am Med Assoc. 2006;H295(22):2620–8. Hallstrom A, Rea TD, Sayre MR, Christenson J, Anton AR, Mosesso VN Jr. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. J Am Med Assoc. 2006;H295(22):2620–8.
17.
go back to reference Smekal D, Johansson J, Huzevka T, Rubertsson S. A pilot study of mechanical chest compressions with the LUCASTM device in cardiopulmonary resuscitation. Resuscitation. 2011;82(6):702–6.CrossRef Smekal D, Johansson J, Huzevka T, Rubertsson S. A pilot study of mechanical chest compressions with the LUCASTM device in cardiopulmonary resuscitation. Resuscitation. 2011;82(6):702–6.CrossRef
18.
go back to reference Axelsson C, Nestin J, Svensson L, Axelsson AB, Herlitz J. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006;71(1):47–55.CrossRef Axelsson C, Nestin J, Svensson L, Axelsson AB, Herlitz J. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006;71(1):47–55.CrossRef
19.
go back to reference Hock Ong ME, Fook-Chong S, Annathurai A, Ang SH, Tiah L, Yong KL. Improved neurologically intact survival with the use of an automated, load distributing band chest compression device for cardiac arrest presenting to the emergency department. Crit Care. 2012;16:R144.CrossRef Hock Ong ME, Fook-Chong S, Annathurai A, Ang SH, Tiah L, Yong KL. Improved neurologically intact survival with the use of an automated, load distributing band chest compression device for cardiac arrest presenting to the emergency department. Crit Care. 2012;16:R144.CrossRef
20.
go back to reference Zeiner S, Sulzgruber P, Datler P, Keferbock M, Poppe M, Lobmeyr E, van Tulder R, Zajicek A, Buchinger A, Polz K, Schrattenbacher G, Sterz F. Chest compression does not seem to improve outcome after out-of hospital cardiac arrest. A single center observational trial. Resuscitation. 2015;96:220–5.CrossRef Zeiner S, Sulzgruber P, Datler P, Keferbock M, Poppe M, Lobmeyr E, van Tulder R, Zajicek A, Buchinger A, Polz K, Schrattenbacher G, Sterz F. Chest compression does not seem to improve outcome after out-of hospital cardiac arrest. A single center observational trial. Resuscitation. 2015;96:220–5.CrossRef
21.
go back to reference Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, Boomars R, Ahlstedt B, Skoog G, Kastberg R, Halliwell D, Box M, Herlitz J, Karlsten R. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest. J Am Med Assoc. 2014;311(1):53–61.CrossRef Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, Boomars R, Ahlstedt B, Skoog G, Kastberg R, Halliwell D, Box M, Herlitz J, Karlsten R. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest. J Am Med Assoc. 2014;311(1):53–61.CrossRef
22.
go back to reference Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, Lamb SE, Slowther AM, Woollard M, Carson A, Smyth M, Whitfield R, Williams A, Pocock H, Black JJ, Wright J, Han K, Gates S. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2015;385:947–55.CrossRef Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, Lamb SE, Slowther AM, Woollard M, Carson A, Smyth M, Whitfield R, Williams A, Pocock H, Black JJ, Wright J, Han K, Gates S. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2015;385:947–55.CrossRef
23.
go back to reference Gao C, Chen Y, Peng H, Chen Y, Zhuang Y, Zhou S. Clinical evaluation of the AutoPulse automated chest compression device for out-of-hospital cardiac arrest in the northern district of Shanghai, China. Arch Med Sci. 2016;12(3):563–70.CrossRef Gao C, Chen Y, Peng H, Chen Y, Zhuang Y, Zhou S. Clinical evaluation of the AutoPulse automated chest compression device for out-of-hospital cardiac arrest in the northern district of Shanghai, China. Arch Med Sci. 2016;12(3):563–70.CrossRef
24.
go back to reference Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Brouwer MA, Westfall M, Souders CM, Malzer R, Grunsven PM, Travis DT, Whitehead A, Herken UR, Lerner EB. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85:741–8.CrossRef Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Brouwer MA, Westfall M, Souders CM, Malzer R, Grunsven PM, Travis DT, Whitehead A, Herken UR, Lerner EB. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85:741–8.CrossRef
25.
go back to reference Anantharaman V, Ng BL, Ang SH, Lee CY, Leong SH, Ong ME, Chua SJ, Rabind AC, Anjali NB, Hao Y. Prompt use of mechanical cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the MECCA study report. Singap Med J. 2017;58:424–31.CrossRef Anantharaman V, Ng BL, Ang SH, Lee CY, Leong SH, Ong ME, Chua SJ, Rabind AC, Anjali NB, Hao Y. Prompt use of mechanical cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the MECCA study report. Singap Med J. 2017;58:424–31.CrossRef
26.
go back to reference Hardig B, Lindgren E, Östlund O, Herlitz J, Karlsten R, Rubertsson S. Outcome among VF/VT patients in the LINC (LUCAS IN cardiac arrest) trial-a randomised, controlled trial. Resuscitation. 2017;115:155–62.CrossRef Hardig B, Lindgren E, Östlund O, Herlitz J, Karlsten R, Rubertsson S. Outcome among VF/VT patients in the LINC (LUCAS IN cardiac arrest) trial-a randomised, controlled trial. Resuscitation. 2017;115:155–62.CrossRef
27.
go back to reference Ck L, et al. Effectiveness of mechanical chest compression for out-of-hospital cardiac arrest patients in an emergency department. Journal of the Chinese Medical Association. 2015;78(6):360–3.CrossRef Ck L, et al. Effectiveness of mechanical chest compression for out-of-hospital cardiac arrest patients in an emergency department. Journal of the Chinese Medical Association. 2015;78(6):360–3.CrossRef
28.
go back to reference Buckler DG, Burke RV, Naim MY, et al. Association of mechanical cardiopulmonary resuscitation device use with cardiac arrest outcomes: a population-based study using the CARES Registry (Cardiac Arrest Registry to Enhance Survival). Circulation. 2016;134(25):2131–3.CrossRef Buckler DG, Burke RV, Naim MY, et al. Association of mechanical cardiopulmonary resuscitation device use with cardiac arrest outcomes: a population-based study using the CARES Registry (Cardiac Arrest Registry to Enhance Survival). Circulation. 2016;134(25):2131–3.CrossRef
29.
go back to reference Hayashida K, Tagami T, Fukuda T, et al. Mechanical Cardiopulmonary Resuscitation and Hospital Survival Among Adult Patients With Nontraumatic Out-of-Hospital Cardiac Arrest Attending the Emergency Department: A Prospective, Multicenter, Observational Study in Japan (SOS-KANTO [Survey of Survivors after Out-of-Hospital Cardiac Arrest in Kanto Area] 2012 Study). J Am Heart Assoc. 2017;31;6(11). Hayashida K, Tagami T, Fukuda T, et al. Mechanical Cardiopulmonary Resuscitation and Hospital Survival Among Adult Patients With Nontraumatic Out-of-Hospital Cardiac Arrest Attending the Emergency Department: A Prospective, Multicenter, Observational Study in Japan (SOS-KANTO [Survey of Survivors after Out-of-Hospital Cardiac Arrest in Kanto Area] 2012 Study). J Am Heart Assoc. 2017;31;6(11).
30.
go back to reference Aufderheide TP. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. 2005;64(3):353–62.CrossRef Aufderheide TP. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. 2005;64(3):353–62.CrossRef
Metadata
Title
A meta-analysis of the resuscitative effects of mechanical and manual chest compression in out-of-hospital cardiac arrest patients
Authors
Ni Zhu
Qi Chen
Zhixia Jiang
Futuan Liao
Bujin Kou
Hui Tang
Manhong Zhou
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2389-6

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue