Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Tigecycline in critically ill patients on continuous renal replacement therapy: a population pharmacokinetic study

Authors: A. Broeker, S. G. Wicha, C. Dorn, A. Kratzer, M. Schleibinger, F. Kees, A. Heininger, M. G. Kees, H. Häberle

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Tigecycline is a vital antibiotic treatment option for infections caused by multiresistant bacteria in the intensive care unit (ICU). Acute kidney injury (AKI) is a common complication in the ICU requiring continuous renal replacement therapy (CRRT), but pharmacokinetic data for tigecycline in patients receiving CRRT are lacking.

Methods

Eleven patients mainly with intra-abdominal infections receiving either continuous veno-venous hemodialysis (CVVHD, n = 8) or hemodiafiltration (CVVHDF, n = 3) were enrolled, and plasma as well as effluent samples were collected according to a rich sampling schedule. Total and free tigecycline was determined by ultrafiltration and high-performance liquid chromatography (HPLC)-UV. Population pharmacokinetic modeling using NONMEM® 7.4 was used to determine the pharmacokinetic parameters as well as the clearance of CVVHD and CVVHDF. Pharmacokinetic/pharmacodynamic target attainment analyses were performed to explore the potential need for dose adjustments of tigecycline in CRRT.

Results

A two-compartment population pharmacokinetic (PK) model was suitable to simultaneously describe the plasma PK and effluent measurements of tigecycline. Tigecycline dialysability was high, as indicated by the high mean saturation coefficients of 0.79 and 0.90 for CVVHD and CVVHDF, respectively, and in range of the concentration-dependent unbound fraction of tigecycline (45–94%). However, the contribution of CRRT to tigecycline clearance (CL) was only moderate (CLCVVHD: 1.69 L/h, CLCVVHDF: 2.71 L/h) in comparison with CLbody (physiological part of the total clearance) of 18.3 L/h. Bilirubin was identified as a covariate on CLbody in our collective, reducing the observed interindividual variability on CLbody from 58.6% to 43.6%. The probability of target attainment under CRRT for abdominal infections was ≥ 0.88 for minimal inhibitory concentration (MIC) values ≤ 0.5 mg/L and similar to patients without AKI.

Conclusions

Despite high dialysability, dialysis clearance displayed only a minor contribution to tigecycline elimination, being in the range of renal elimination in patients without AKI. No dose adjustment of tigecycline seems necessary in CRRT.

Trial registration

EudraCT, 2012–005617-39. Registered on 7 August 2013.
Appendix
Available only for authorised users
Literature
1.
go back to reference Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7:1459–70.CrossRef Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7:1459–70.CrossRef
2.
go back to reference Morfin-Otero R, Dowzicky MJ. Changes in MIC within a global collection of Acinetobacter baumannii collected as part of the Tigecycline Evaluation and Surveillance Trial, 2004 to 2009. Clin Ther. 2012;34:101–12.CrossRef Morfin-Otero R, Dowzicky MJ. Changes in MIC within a global collection of Acinetobacter baumannii collected as part of the Tigecycline Evaluation and Surveillance Trial, 2004 to 2009. Clin Ther. 2012;34:101–12.CrossRef
3.
go back to reference Lewis SJ, Mueller BA. Antibiotic dosing in critically ill patients receiving CRRT: underdosing is overprevalent. Semin Dial. 2014;27:441–5.CrossRef Lewis SJ, Mueller BA. Antibiotic dosing in critically ill patients receiving CRRT: underdosing is overprevalent. Semin Dial. 2014;27:441–5.CrossRef
4.
go back to reference Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226–35.CrossRef Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226–35.CrossRef
5.
go back to reference Korth-Bradley JM, Troy SM, Matschke K, Muralidharan G, Fruncillo RJ, Speth JL, et al. Tigecycline pharmacokinetics in subjects with various degrees of renal function. J Clin Pharmacol. 2012;52:1379–87.CrossRef Korth-Bradley JM, Troy SM, Matschke K, Muralidharan G, Fruncillo RJ, Speth JL, et al. Tigecycline pharmacokinetics in subjects with various degrees of renal function. J Clin Pharmacol. 2012;52:1379–87.CrossRef
6.
go back to reference Morgera S, Schneider M, Slowinski T, Vargas-Hein O, Zuckermann-Becker H, Peters H, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid–base status. Crit Care Med. 2009;37:2018–24.CrossRef Morgera S, Schneider M, Slowinski T, Vargas-Hein O, Zuckermann-Becker H, Peters H, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid–base status. Crit Care Med. 2009;37:2018–24.CrossRef
9.
go back to reference Lindbom L, Pihlgren P, Jonsson EN, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.CrossRef Lindbom L, Pihlgren P, Jonsson EN, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.CrossRef
11.
go back to reference Lee CS, Marbury TC, Benet LZ. Clearance calculations in hemodialysis: application to blood, plasma, and dialysate measurements for ethambutol. J Pharmacokinet Biopharm. 1980;8:69–81.CrossRef Lee CS, Marbury TC, Benet LZ. Clearance calculations in hemodialysis: application to blood, plasma, and dialysate measurements for ethambutol. J Pharmacokinet Biopharm. 1980;8:69–81.CrossRef
17.
go back to reference Barbour A, Schmidt S, Ma B, Schiefelbein L, Rand KH, Burkhardt O, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet. 2009;48:575–84.CrossRef Barbour A, Schmidt S, Ma B, Schiefelbein L, Rand KH, Burkhardt O, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet. 2009;48:575–84.CrossRef
19.
Metadata
Title
Tigecycline in critically ill patients on continuous renal replacement therapy: a population pharmacokinetic study
Authors
A. Broeker
S. G. Wicha
C. Dorn
A. Kratzer
M. Schleibinger
F. Kees
A. Heininger
M. G. Kees
H. Häberle
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2278-4

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue