Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Review

Use of ‘tidal volume challenge’ to improve the reliability of pulse pressure variation

Authors: Sheila Nainan Myatra, Xavier Monnet, Jean-Louis Teboul

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2017. Other selected articles can be found online at http://​ccforum.​com/​series/​annualupdate2017​. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://​www.​springer.​com/​series/​8901.
Literature
1.
go back to reference Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.CrossRefPubMed Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.CrossRefPubMed
2.
go back to reference Murakawa K, Kobayashi A. Effects of vasopressors on renal tissue gas tensions during hemorrhagic shock in dogs. Crit Care Med. 1998;16:789–92.CrossRef Murakawa K, Kobayashi A. Effects of vasopressors on renal tissue gas tensions during hemorrhagic shock in dogs. Crit Care Med. 1998;16:789–92.CrossRef
3.
go back to reference Pinsky MR, Brophy P, Padilla J, Paganini E, Pannu N. Fluid and volume monitoring. Int J Artif Organs. 2008;31:111–26.PubMed Pinsky MR, Brophy P, Padilla J, Paganini E, Pannu N. Fluid and volume monitoring. Int J Artif Organs. 2008;31:111–26.PubMed
4.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRefPubMed Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRefPubMed
6.
go back to reference Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.CrossRefPubMed Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.CrossRefPubMed
7.
go back to reference Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients. A systematic review of the literature. Crit Care Med. 2009;37:2642–7.CrossRefPubMed Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients. A systematic review of the literature. Crit Care Med. 2009;37:2642–7.CrossRefPubMed
8.
go back to reference Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensive Care Med. 2014;40:798–807.CrossRefPubMed Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensive Care Med. 2014;40:798–807.CrossRefPubMed
9.
go back to reference Hong JQ, He HF, Chen ZY, et al. Comparison of stroke volume variation with pulse pressure variation as a diagnostic indicator of fluid responsiveness in mechanically ventilated critically ill patients. Saudi Med J. 2014;35:261–8.PubMed Hong JQ, He HF, Chen ZY, et al. Comparison of stroke volume variation with pulse pressure variation as a diagnostic indicator of fluid responsiveness in mechanically ventilated critically ill patients. Saudi Med J. 2014;35:261–8.PubMed
10.
go back to reference Yang X, Du B. Does pulse pressure variation predicts fluid responsiveness in critically ill patients: a critical review and meta-analysis. Crit Care. 2014;18:650.CrossRefPubMedPubMedCentral Yang X, Du B. Does pulse pressure variation predicts fluid responsiveness in critically ill patients: a critical review and meta-analysis. Crit Care. 2014;18:650.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG. Hemodynamic effects of intermittent positive pressure ventilation. Anesthesiology. 1966;27:584–90.CrossRefPubMed Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG. Hemodynamic effects of intermittent positive pressure ventilation. Anesthesiology. 1966;27:584–90.CrossRefPubMed
13.
go back to reference Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.CrossRefPubMed Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.CrossRefPubMed
14.
go back to reference Permutt S, Wise RA, Brower RG. How changes in pleural and alveolar pressure cause changes in afterload and preload. In: Scharf SM, Cassidy SS, editors. Heart-Lung Interactions in Health and Disease. New York: Marcel Dekker; 1989. p. 243–50. Permutt S, Wise RA, Brower RG. How changes in pleural and alveolar pressure cause changes in afterload and preload. In: Scharf SM, Cassidy SS, editors. Heart-Lung Interactions in Health and Disease. New York: Marcel Dekker; 1989. p. 243–50.
15.
go back to reference Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP. Cyclic changes in arterial pulse during respiratory support. Circulation. 1983;68:266–74.CrossRefPubMed Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP. Cyclic changes in arterial pulse during respiratory support. Circulation. 1983;68:266–74.CrossRefPubMed
16.
go back to reference Scharf SM, Brown R, Saunders N, Green LH. Hemodynamic effects of positive-pressure inflation. J Appl Physiol. 1980;49:124–31.PubMed Scharf SM, Brown R, Saunders N, Green LH. Hemodynamic effects of positive-pressure inflation. J Appl Physiol. 1980;49:124–31.PubMed
17.
go back to reference Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.CrossRefPubMed Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.CrossRefPubMed
18.
go back to reference Mahjoub Y, Lejeune V, Muller L, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point prevalence study. Br J Anaesth. 2014;112:681–5.CrossRefPubMed Mahjoub Y, Lejeune V, Muller L, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point prevalence study. Br J Anaesth. 2014;112:681–5.CrossRefPubMed
19.
go back to reference Fischer MO, Mahjoub Y, Boisselier C, et al. Arterial pulse pressure variation suitability in critical care: A French national survey. Anaesth Crit Care Pain Med. 2015;34:23–8.CrossRefPubMed Fischer MO, Mahjoub Y, Boisselier C, et al. Arterial pulse pressure variation suitability in critical care: A French national survey. Anaesth Crit Care Pain Med. 2015;34:23–8.CrossRefPubMed
20.
go back to reference Benes J, Zatloukal J, Kletecka J, Simanova A, Haidingerova L, Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput. 2013;28:225–31.CrossRefPubMed Benes J, Zatloukal J, Kletecka J, Simanova A, Haidingerova L, Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput. 2013;28:225–31.CrossRefPubMed
21.
go back to reference Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.CrossRefPubMed Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.CrossRefPubMed
24.
go back to reference Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.CrossRefPubMed Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.CrossRefPubMed
25.
go back to reference Monnet X, Bleibtreu A, Ferré A, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40:152–7.CrossRefPubMed Monnet X, Bleibtreu A, Ferré A, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40:152–7.CrossRefPubMed
26.
go back to reference Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–701.CrossRefPubMed Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–701.CrossRefPubMed
27.
go back to reference Guerin L, Monnet X, Teboul JL. Monitoring volume and fluid responsiveness: From static to dynamic indicators. Best Pract Res Clin Anaesthesiol. 2013;27:177–85.CrossRefPubMed Guerin L, Monnet X, Teboul JL. Monitoring volume and fluid responsiveness: From static to dynamic indicators. Best Pract Res Clin Anaesthesiol. 2013;27:177–85.CrossRefPubMed
28.
go back to reference De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med. 2007;33:1111–3.CrossRefPubMed De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med. 2007;33:1111–3.CrossRefPubMed
29.
go back to reference Muller L, Toumi M, Bousquet PJ, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7.CrossRefPubMed Muller L, Toumi M, Bousquet PJ, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7.CrossRefPubMed
30.
go back to reference Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.CrossRefPubMed Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.CrossRefPubMed
31.
go back to reference Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.CrossRefPubMed Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.CrossRefPubMed
33.
go back to reference De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent J. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.CrossRefPubMed De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent J. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.CrossRefPubMed
34.
go back to reference Vallée F, Richard JC, Mari A, et al. Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med. 2009;35:1004–10.CrossRefPubMed Vallée F, Richard JC, Mari A, et al. Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med. 2009;35:1004–10.CrossRefPubMed
35.
go back to reference Lakhal K, Ehrmann S, Benzekri-Lefèvre D, et al. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care. 2011;15:R85.CrossRefPubMedPubMedCentral Lakhal K, Ehrmann S, Benzekri-Lefèvre D, et al. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care. 2011;15:R85.CrossRefPubMedPubMedCentral
36.
go back to reference Lansdorp B, Lemson J, vanPutten MJ, de Keijzer A, van der Hoeven JG, Pickkers P. Dynamic indices do not predict volume responsiveness in routine clinical practice. Br J Anaesth. 2012;108:395–401.CrossRefPubMed Lansdorp B, Lemson J, vanPutten MJ, de Keijzer A, van der Hoeven JG, Pickkers P. Dynamic indices do not predict volume responsiveness in routine clinical practice. Br J Anaesth. 2012;108:395–401.CrossRefPubMed
37.
go back to reference Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.CrossRefPubMed Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.CrossRefPubMed
38.
go back to reference Teboul JL, Monnet X. Pulse pressure variation and ARDS. Minerva Anestesiol. 2013;79:398–407.PubMed Teboul JL, Monnet X. Pulse pressure variation and ARDS. Minerva Anestesiol. 2013;79:398–407.PubMed
39.
go back to reference Pinsky MR. Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med. 2004;30:1008–10.CrossRefPubMed Pinsky MR. Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med. 2004;30:1008–10.CrossRefPubMed
40.
go back to reference Freitas FG, Bafi AT, Nascente AP, et al. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies. Br J Anaesth. 2013;110:402–8.CrossRefPubMed Freitas FG, Bafi AT, Nascente AP, et al. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies. Br J Anaesth. 2013;110:402–8.CrossRefPubMed
41.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRefPubMed Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRefPubMed
42.
go back to reference Futier E, Pereira B, Jaber S. Intraoperative low-tidal-volume ventilation. N Engl J Med. 2013;369:1862–3.CrossRefPubMed Futier E, Pereira B, Jaber S. Intraoperative low-tidal-volume ventilation. N Engl J Med. 2013;369:1862–3.CrossRefPubMed
43.
go back to reference Cannesson M, Le Manach Y, Hofer C, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115:231–41.CrossRefPubMed Cannesson M, Le Manach Y, Hofer C, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115:231–41.CrossRefPubMed
44.
go back to reference Biais M, Ehrmann S, Mari A, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18:587.CrossRefPubMedPubMedCentral Biais M, Ehrmann S, Mari A, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18:587.CrossRefPubMedPubMedCentral
45.
go back to reference Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21.CrossRefPubMed Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21.CrossRefPubMed
46.
go back to reference Teboul JL, Pinsky MR, Mercat A, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28:3631–6.CrossRefPubMed Teboul JL, Pinsky MR, Mercat A, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28:3631–6.CrossRefPubMed
Metadata
Title
Use of ‘tidal volume challenge’ to improve the reliability of pulse pressure variation
Authors
Sheila Nainan Myatra
Xavier Monnet
Jean-Louis Teboul
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1637-x

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue