Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Review

Left ventricular function: time-varying elastance and left ventricular aortic coupling

Author: Keith R. Walley

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Many aspects of left ventricular function are explained by considering ventricular pressure–volume characteristics. Contractility is best measured by the slope, Emax, of the end-systolic pressure–volume relationship. Ventricular systole is usefully characterized by a time-varying elastance (ΔP/ΔV). An extended area, the pressure–volume area, subtended by the ventricular pressure–volume loop (useful mechanical work) and the ESPVR (energy expended without mechanical work), is linearly related to myocardial oxygen consumption per beat. For energetically efficient systolic ejection ventricular elastance should be, and is, matched to aortic elastance. Without matching, the fraction of energy expended without mechanical work increases and energy is lost during ejection across the aortic valve. Ventricular function curves, derived from ventricular pressure–volume characteristics, interact with venous return curves to regulate cardiac output. Thus, consideration of ventricular pressure–volume relationships highlight features that allow the heart to efficiently respond to any demand for cardiac output and oxygen delivery.
Literature
1.
go back to reference Elzinga G, Westerhof N. How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res. 1979;44(3):303–8.CrossRefPubMed Elzinga G, Westerhof N. How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res. 1979;44(3):303–8.CrossRefPubMed
2.
go back to reference Katz AM. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation. 2002;106(23):2986–92.CrossRefPubMed Katz AM. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation. 2002;106(23):2986–92.CrossRefPubMed
3.
go back to reference Imperial ES, Levy MN, Zieske H. Outflow resistance as an independent determinant of cardiac performance. Circ Res. 1961;9(6):1148–55.CrossRef Imperial ES, Levy MN, Zieske H. Outflow resistance as an independent determinant of cardiac performance. Circ Res. 1961;9(6):1148–55.CrossRef
4.
go back to reference Weber KT, Janicki JS, Reeves RC, Hefner LL, Reeves TJ. Determinants of stroke volume in the isolated canine heart. J Appl Physiol. 1974;37(5):742–7.PubMed Weber KT, Janicki JS, Reeves RC, Hefner LL, Reeves TJ. Determinants of stroke volume in the isolated canine heart. J Appl Physiol. 1974;37(5):742–7.PubMed
5.
go back to reference Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9(5):706–18.CrossRefPubMed Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9(5):706–18.CrossRefPubMed
6.
go back to reference Paley HW, McDonald IG, Blumenthal J, Mailhot J. The effects of posture and isoproterenol on the velocity of left ventricular contraction in man. The reciprocal relationship between left ventricular volume and myocardial wall force during ejection on mean rate of circumferential shortening. J Clin Invest. 1971;50:2283–94.CrossRefPubMedPubMedCentral Paley HW, McDonald IG, Blumenthal J, Mailhot J. The effects of posture and isoproterenol on the velocity of left ventricular contraction in man. The reciprocal relationship between left ventricular volume and myocardial wall force during ejection on mean rate of circumferential shortening. J Clin Invest. 1971;50:2283–94.CrossRefPubMedPubMedCentral
7.
go back to reference Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston Jr DC, Rankin JS. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985;71(5):994–1009.CrossRefPubMed Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston Jr DC, Rankin JS. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985;71(5):994–1009.CrossRefPubMed
8.
go back to reference Noble MI. Problems concerning the application of concepts of muscle mechanics to the determination of the contractile state of the heart. Circulation. 1972;45(2):252–5.CrossRefPubMed Noble MI. Problems concerning the application of concepts of muscle mechanics to the determination of the contractile state of the heart. Circulation. 1972;45(2):252–5.CrossRefPubMed
9.
go back to reference Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56(6):808–15.CrossRefPubMed Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56(6):808–15.CrossRefPubMed
10.
go back to reference Chiu YC, Walley KR, Ford LE. Comparison of the effects of different inotropic interventions on force, velocity, and power in rabbit myocardium. Circ Res. 1989;65(5):1161–71.CrossRefPubMed Chiu YC, Walley KR, Ford LE. Comparison of the effects of different inotropic interventions on force, velocity, and power in rabbit myocardium. Circ Res. 1989;65(5):1161–71.CrossRefPubMed
11.
go back to reference Sagawa K. End-systolic pressure-volume relationship in retrospect and prospect. Fed Proc. 1984;43(9):2399–401.PubMed Sagawa K. End-systolic pressure-volume relationship in retrospect and prospect. Fed Proc. 1984;43(9):2399–401.PubMed
12.
go back to reference Suga H, Sagawa K. Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation. Ann Biomed Eng. 1972;1(2):160–81.CrossRefPubMed Suga H, Sagawa K. Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation. Ann Biomed Eng. 1972;1(2):160–81.CrossRefPubMed
13.
go back to reference Sagawa K, Suga H, Shoukas AA, Bakalar KM. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977;40(5):748–53.CrossRefPubMed Sagawa K, Suga H, Shoukas AA, Bakalar KM. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977;40(5):748–53.CrossRefPubMed
14.
go back to reference Glantz SA, Kernoff RS. Muscle stiffness determined from canine left ventricular pressure-volume curves. Circ Res. 1975;37(6):787–94.CrossRefPubMed Glantz SA, Kernoff RS. Muscle stiffness determined from canine left ventricular pressure-volume curves. Circ Res. 1975;37(6):787–94.CrossRefPubMed
15.
go back to reference Tyberg JV, Smith ER. Ventricular diastole and the role of the pericardium. Herz. 1990;15(6):354–61.PubMed Tyberg JV, Smith ER. Ventricular diastole and the role of the pericardium. Herz. 1990;15(6):354–61.PubMed
16.
17.
go back to reference Nikolic S, Yellin EL, Tamura K, Vetter H, Tamura T, Meisner JS, Frater RW. Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ Res. 1988;62(6):1210–22.CrossRefPubMed Nikolic S, Yellin EL, Tamura K, Vetter H, Tamura T, Meisner JS, Frater RW. Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ Res. 1988;62(6):1210–22.CrossRefPubMed
18.
go back to reference Walley KR, Cooper DJ. Diastolic stiffness impairs left ventricular function during hypovolemic shock in pigs. Am J Physiol. 1991;260(3 Pt 2):H702–12.PubMed Walley KR, Cooper DJ. Diastolic stiffness impairs left ventricular function during hypovolemic shock in pigs. Am J Physiol. 1991;260(3 Pt 2):H702–12.PubMed
19.
go back to reference Glantz SA, Parmley WW. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978;42(2):171–80.CrossRefPubMed Glantz SA, Parmley WW. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978;42(2):171–80.CrossRefPubMed
20.
go back to reference Glantz SA, Misbach GA, Moores WY, Mathey DG, Lekven J, Stowe DF, Parmley WW, Tyberg JV. The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res. 1978;42(3):433–41.CrossRefPubMed Glantz SA, Misbach GA, Moores WY, Mathey DG, Lekven J, Stowe DF, Parmley WW, Tyberg JV. The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res. 1978;42(3):433–41.CrossRefPubMed
21.
go back to reference Mahler F, Ross Jr J, O'Rourke RA, Covell JW. Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol. 1975;35(5):626–34.CrossRefPubMed Mahler F, Ross Jr J, O'Rourke RA, Covell JW. Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol. 1975;35(5):626–34.CrossRefPubMed
22.
go back to reference Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRefPubMed Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.CrossRefPubMed
23.
go back to reference Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.CrossRefPubMed Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.CrossRefPubMed
24.
go back to reference Suga H. Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure-volume ratio. IEEE Trans Biomed Eng. 1971;18(1):47–55.CrossRefPubMed Suga H. Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure-volume ratio. IEEE Trans Biomed Eng. 1971;18(1):47–55.CrossRefPubMed
25.
go back to reference Suga H, Yamada O, Goto Y, Igarashi Y. Peak isovolumic pressure-volume relation of puppy left ventricle. Am J Physiol. 1986;250(2 Pt 2):H167–72.PubMed Suga H, Yamada O, Goto Y, Igarashi Y. Peak isovolumic pressure-volume relation of puppy left ventricle. Am J Physiol. 1986;250(2 Pt 2):H167–72.PubMed
26.
go back to reference Khalafbeigui F, Suga H, Sagawa K. Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am J Physiol. 1979;237(5):H566–9.PubMed Khalafbeigui F, Suga H, Sagawa K. Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am J Physiol. 1979;237(5):H566–9.PubMed
27.
go back to reference Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981;240(1):H39–44.PubMed Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981;240(1):H39–44.PubMed
28.
go back to reference Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983;53(3):306–18.CrossRefPubMed Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983;53(3):306–18.CrossRefPubMed
29.
go back to reference Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I. Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol. 1983;244(2):H206–14.PubMed Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I. Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol. 1983;244(2):H206–14.PubMed
30.
go back to reference Suga H, Goto Y, Futaki S, Kawaguchi O, Yaku H, Hata K, Takasago T. Systolic pressure-volume area (PVA) as the energy of contraction in Starling’s law of the heart. Heart Vessels. 1991;6(2):65–70.CrossRefPubMed Suga H, Goto Y, Futaki S, Kawaguchi O, Yaku H, Hata K, Takasago T. Systolic pressure-volume area (PVA) as the energy of contraction in Starling’s law of the heart. Heart Vessels. 1991;6(2):65–70.CrossRefPubMed
31.
go back to reference Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res. 1982;50(2):273–86.CrossRefPubMed Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res. 1982;50(2):273–86.CrossRefPubMed
32.
go back to reference Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250(6 Pt 2):R1021–7.PubMed Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250(6 Pt 2):R1021–7.PubMed
33.
go back to reference De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol. 1993;264(6 Pt 2):H1817–24.PubMed De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol. 1993;264(6 Pt 2):H1817–24.PubMed
34.
go back to reference Magder S, Veerassamy S, Bates JH. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol (1985). 2009;106(1):81–90.CrossRef Magder S, Veerassamy S, Bates JH. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol (1985). 2009;106(1):81–90.CrossRef
35.
go back to reference Mitzner W, Goldberg H. Effects of epinephrine on resisitive and compliant properties of the canine vasculature. J Appl Physiol. 1975;39(2):272–80.PubMed Mitzner W, Goldberg H. Effects of epinephrine on resisitive and compliant properties of the canine vasculature. J Appl Physiol. 1975;39(2):272–80.PubMed
Metadata
Title
Left ventricular function: time-varying elastance and left ventricular aortic coupling
Author
Keith R. Walley
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1439-6

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue