Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis

Authors: Aletta P. I. Houwink, Saskia Rijkenberg, Rob J. Bosman, Peter H. J. van der Voort

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

During resuscitation in severe sepsis and septic shock, several goals are set. However, usually not all goals are equally met. The aim of this study is to determine the relative importance of the different goals, such as mean arterial pressure (MAP), lactate, central venous oxygen saturation (ScvO2) and central to forefoot temperature (delta-T), and how they relate to intensive care unit (ICU) and hospital mortality.

Methods

In a retrospective cohort study in a 20-bed mixed medical and surgical ICU of a teaching hospital we studied consecutive critically ill patients who were admitted for confirmed infection and severe sepsis or septic shock between 2008 and 2014. All validated MAP, lactate levels, ScvO2 and delta-T for the first 24 hours of ICU treatment were extracted from a clinical database. Logistic regression analyses were performed on validated measurements in the first hour after admission and on mean values over 24 hours. Patients were categorized by MAP (24-hour mean below or above 65 mmHg) and lactate (24-hour mean below or above 2 mmol/l) for Cox regression analysis.

Results

From 837 patients, 821 were eligible for analysis. All had MAP and lactate measurements. The delta-T was available in 812 (99 %) and ScvO2 was available for 193 out of these patients (23.5 %). Admission lactate (p < 0.001) and admission MAP (p < 0.001) were independent predictors of ICU and hospital mortality. The 24-hour mean values for lactate, MAP and delta-T were all independent predictors of ICU mortality. Hospital mortality was independently predicted by the 24-hour mean lactate (odds ratio (OR) 1.34, 95 % confidence interval (CI) 1.30–1.40, p = 0.001) mean MAP (OR 0.96, 95 % CI 0.95–0.97, p = 0.001) and mean delta-T (OR 1.09, 95 % CI 1.06–1.12, p = 0.001). Patients with a 24-hour mean lactate below 2 mmol/l and a 24-hour mean MAP above 65 mmHg had the best survival, followed by patients with a low lactate and a low MAP.

Conclusions

Admission MAP and lactate independently predicted ICU and hospital mortality. The 24-hour mean lactate, mean MAP and mean delta-T independently predicted hospital mortality. A Cox regression analysis showed that 24-hour mean lactate above 2 mmol/l is the strongest predictor for ICU mortality.
Literature
1.
go back to reference Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.CrossRefPubMed
3.
4.
go back to reference ProCESS Investigators Angus DC, Yealy DM, et al. Protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.CrossRefPubMed ProCESS Investigators Angus DC, Yealy DM, et al. Protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.CrossRefPubMed
5.
go back to reference Perel A. Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines—does one size fit all? Crit Care. 2008;12:223.CrossRefPubMedPubMedCentral Perel A. Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines—does one size fit all? Crit Care. 2008;12:223.CrossRefPubMedPubMedCentral
6.
go back to reference Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRefPubMed Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRefPubMed
7.
go back to reference Investigators ARISE, Clinical Trials Group ANZICS, Peake SL, et al. Goal directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.CrossRef Investigators ARISE, Clinical Trials Group ANZICS, Peake SL, et al. Goal directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.CrossRef
9.
go back to reference Nguyen HB, Loomba M, Yang JJ, et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. J Inflamm (Lond). 2010;7:6.CrossRef Nguyen HB, Loomba M, Yang JJ, et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. J Inflamm (Lond). 2010;7:6.CrossRef
10.
11.
go back to reference Dubin A, Pozo MO, Casabella C, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.CrossRefPubMedPubMedCentral Dubin A, Pozo MO, Casabella C, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.CrossRefPubMedPubMedCentral
12.
go back to reference Hernandez G, Boerma EC, Dubin A, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28:538. e9–14.CrossRefPubMed Hernandez G, Boerma EC, Dubin A, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28:538. e9–14.CrossRefPubMed
13.
go back to reference Boerma EC, Kuiper M, Kingma WP, et al. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med. 2008;34:1294–8.CrossRefPubMedPubMedCentral Boerma EC, Kuiper M, Kingma WP, et al. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med. 2008;34:1294–8.CrossRefPubMedPubMedCentral
14.
go back to reference Hernandez G, Pedreros C, Veas E, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care. 2012;27:283–8.CrossRefPubMed Hernandez G, Pedreros C, Veas E, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care. 2012;27:283–8.CrossRefPubMed
15.
go back to reference Chevret S, Seaman S, Resche-Rigon M. Multiple imputation: a mature approach to dealing with missing data. Intensive Care Med. 2015;41:348–50.CrossRefPubMed Chevret S, Seaman S, Resche-Rigon M. Multiple imputation: a mature approach to dealing with missing data. Intensive Care Med. 2015;41:348–50.CrossRefPubMed
16.
go back to reference Hernandez G, Bruhn A, Castro R, et al. Persistent sepsis-induced hypotension without hyperlactatemia: a distinct clinical and physiological profile within the spectrum of septic shock. Crit Care Res Pract. 2012;2012:536852.PubMedPubMedCentral Hernandez G, Bruhn A, Castro R, et al. Persistent sepsis-induced hypotension without hyperlactatemia: a distinct clinical and physiological profile within the spectrum of septic shock. Crit Care Res Pract. 2012;2012:536852.PubMedPubMedCentral
17.
go back to reference Casserly B, Phillips GS, Schorr C, et al. Lactate measurements in sepsis-induced tissue hypoperfusion. Crit Care Med. 2015;43:567–73.CrossRefPubMed Casserly B, Phillips GS, Schorr C, et al. Lactate measurements in sepsis-induced tissue hypoperfusion. Crit Care Med. 2015;43:567–73.CrossRefPubMed
18.
go back to reference Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.CrossRefPubMed Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.CrossRefPubMed
19.
go back to reference Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRefPubMed Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRefPubMed
20.
go back to reference Dünser MW, Ruokonen E, Pettilä V, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13:R181.CrossRefPubMedPubMedCentral Dünser MW, Ruokonen E, Pettilä V, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13:R181.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–42.CrossRefPubMed Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–42.CrossRefPubMed
23.
go back to reference Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.CrossRefPubMed Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.CrossRefPubMed
24.
go back to reference Coudroy R, Jamet A, Frat JP, et al. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2014;41:452–9.CrossRefPubMed Coudroy R, Jamet A, Frat JP, et al. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2014;41:452–9.CrossRefPubMed
25.
go back to reference Sadaka F, Juarez M, Naydenov S, et al. Fluid resuscitation in septic shock: the effect of increasing fluid balance on mortality. J Intensive Care Med. 2014;29:213–7.CrossRefPubMed Sadaka F, Juarez M, Naydenov S, et al. Fluid resuscitation in septic shock: the effect of increasing fluid balance on mortality. J Intensive Care Med. 2014;29:213–7.CrossRefPubMed
Metadata
Title
The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis
Authors
Aletta P. I. Houwink
Saskia Rijkenberg
Rob J. Bosman
Peter H. J. van der Voort
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1243-3

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue