Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Non-invasive monitoring of mitochondrial oxygenation and respiration in critical illness using a novel technique

Authors: Floor A. Harms, Sander I. A. Bodmer, Nicolaas J.H. Raat, Egbert G. Mik

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Although mitochondrial dysfunction is proposed to be involved in the pathophysiology of sepsis, conflicting results are reported. Variation in methods used to assess mitochondrial function might contribute to this controversy. A non-invasive method for monitoring mitochondrial function might help overcome this limitation. Therefore, this study explores the possibility of in vivo monitoring of mitochondrial oxygen tension (mitoPO2) and local mitochondrial oxygen consumptionin in an endotoxin-induced septic animal model.

Methods

Animals (rats n = 28) were assigned to a control group (no treatment), or to receive lipopolysaccharide without fluid resuscitation (LPS-NR) or lipopolysaccharide plus fluid resuscitation (LPS-FR). Sepsis was induced by intravenous LPS injection (1.6 mg/kg during 10 min), fluid resuscitation was performed by continuous infusion of a colloid solution, 7 ml kg−1 h−1 and a 2-ml bolus of the same colloid solution. MitoPO2 and ODR were measured by means of the protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT). Kinetic aspects of the drop in mitoPO2 were recorded during 60s of skin compression. ODR was derived from the slope of the mitoPO2 oxygen disappearance curve. Measurements were made before and 3 h after induction of sepsis.

Results

At baseline (t0) all rats were hemodynamically stable. After LPS induction (t1), significant (p < 0.05) hemodynamic changes were observed in both LPS groups. At t0, mitoPO2 and ODR were 59 ± 1 mmHg, 64 ± 3 mmHg, 68 ± 4 mmHg and 5.0 ± 0.3 mmHg s−1, 5.3 ± 0.5 mmHg s−1, 5.7 ± 0.5 mmHg s−1 in the control, LPS-FR and LPS-NR groups, respectively; at t1 these values were 58 ± 5 mmHg, 50 ± 2.3 mmHg, 30 ± 3.3 mmHg and 4.5 ± 0.5 mmHg s−1, 3.3 ± 0.3 mmHg s−1, 1.8 ± 0.3 mmHg s−1, respectively. At t1, only mitoPO2 showed a significant difference between the controls and LPS-NR. In contrast, at t1 both LPS groups showed a significantly lower ODR compared to controls.

Conclusion

These data show the feasibility to monitor alterations in mitochondrial oxygen consumption in vivo by PpIX-TSLT in a septic rat model. These results may contribute to the development of a clinical device to monitor mitochondrial function in the critically ill.
Literature
1.
go back to reference Bakker J, Levi M, van Hout BA, van Gestel A. [Sepsis, a complicated syndrome with major medical and social consequences] Sepsis, een gecompliceerd syndroom met belangrijke medische en maatschappelijke consequenties. Ned Tijdschr Geneeskd. 2004;148:975–8.PubMed Bakker J, Levi M, van Hout BA, van Gestel A. [Sepsis, a complicated syndrome with major medical and social consequences] Sepsis, een gecompliceerd syndroom met belangrijke medische en maatschappelijke consequenties. Ned Tijdschr Geneeskd. 2004;148:975–8.PubMed
2.
go back to reference Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.CrossRef Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.CrossRef
3.
go back to reference Natanson C, Danner RL, Reilly JM, Doerfler ML, Hoffman WD, Akin GL, et al. Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiol. 1990;259:H1440–7.PubMed Natanson C, Danner RL, Reilly JM, Doerfler ML, Hoffman WD, Akin GL, et al. Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiol. 1990;259:H1440–7.PubMed
4.
go back to reference Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18:280–6.CrossRef Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18:280–6.CrossRef
5.
go back to reference Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20.CrossRef Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20.CrossRef
6.
go back to reference Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef
7.
go back to reference Fink MP. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin. 2002;18:165–75.CrossRef Fink MP. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin. 2002;18:165–75.CrossRef
8.
go back to reference Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107:57–64.CrossRef Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107:57–64.CrossRef
9.
go back to reference Jeger V, Djafarzadeh S, Jakob SM, Takala J. Mitochondrial function in sepsis. Eur J Clin Invest. 2013;43:532–42.CrossRef Jeger V, Djafarzadeh S, Jakob SM, Takala J. Mitochondrial function in sepsis. Eur J Clin Invest. 2013;43:532–42.CrossRef
10.
go back to reference Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol. 2004;286:R491–7.CrossRef Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol. 2004;286:R491–7.CrossRef
11.
go back to reference Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006;48:377–85.CrossRef Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006;48:377–85.CrossRef
12.
go back to reference Llesuy S, Evelson P, Gonzalez-Flecha B, Peralta J, Carreras MC, Poderoso JJ, et al. Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med. 1994;16:445–51.CrossRef Llesuy S, Evelson P, Gonzalez-Flecha B, Peralta J, Carreras MC, Poderoso JJ, et al. Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med. 1994;16:445–51.CrossRef
13.
go back to reference Takeyama N, Itoh Y, Kitazawa Y, Tanaka T. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. Am J Physiol. 1990;259:E498–505.PubMed Takeyama N, Itoh Y, Kitazawa Y, Tanaka T. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. Am J Physiol. 1990;259:E498–505.PubMed
14.
go back to reference Vanasco V, Cimolai MC, Evelson P, Alvarez S. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radic Res. 2008;42:815–23.CrossRef Vanasco V, Cimolai MC, Evelson P, Alvarez S. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radic Res. 2008;42:815–23.CrossRef
15.
go back to reference Kozlov AV, Gille L, Miller I, Piskernik C, Haindl S, Staniek K, et al. Opposite effects of endotoxin on mitochondrial and endoplasmic reticulum functions. Biochem Biophys Res Commun. 2007;352:91–6.CrossRef Kozlov AV, Gille L, Miller I, Piskernik C, Haindl S, Staniek K, et al. Opposite effects of endotoxin on mitochondrial and endoplasmic reticulum functions. Biochem Biophys Res Commun. 2007;352:91–6.CrossRef
16.
go back to reference Markley MA, Pierro A, Eaton S. Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: effects of glutamine. Clin Sci (Lond). 2002;102:337–44.CrossRef Markley MA, Pierro A, Eaton S. Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: effects of glutamine. Clin Sci (Lond). 2002;102:337–44.CrossRef
17.
go back to reference Crouser ED, Julian MW, Blaho DV, Pfeiffer DR. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002;30:276–84.CrossRef Crouser ED, Julian MW, Blaho DV, Pfeiffer DR. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002;30:276–84.CrossRef
18.
go back to reference Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic Biol Med. 2000;29:202–10.CrossRef Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic Biol Med. 2000;29:202–10.CrossRef
19.
go back to reference Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35:S441–8.CrossRef Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35:S441–8.CrossRef
20.
go back to reference Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977–90.CrossRef Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977–90.CrossRef
21.
go back to reference Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, et al. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX. Nat Methods. 2006;3:939–45.CrossRef Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, et al. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX. Nat Methods. 2006;3:939–45.CrossRef
22.
go back to reference Harms FA, Bodmer SI, Raat NJ, Stolker RJ, Mik EG. Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements in the skin. Opt Lett. 2012;37:2625–7.CrossRef Harms FA, Bodmer SI, Raat NJ, Stolker RJ, Mik EG. Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements in the skin. Opt Lett. 2012;37:2625–7.CrossRef
23.
go back to reference Harms FA, de Boon WM, Balestra GM, Bodmer SI, Johannes T, Stolker RJ, et al. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid. J Biophotonics. 2011;4:731–9.CrossRef Harms FA, de Boon WM, Balestra GM, Bodmer SI, Johannes T, Stolker RJ, et al. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid. J Biophotonics. 2011;4:731–9.CrossRef
24.
go back to reference Harms FA, Voorbeijtel WJ, Bodmer SI, Raat NJ, Mik EG. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion. 2013;13:507–14.CrossRef Harms FA, Voorbeijtel WJ, Bodmer SI, Raat NJ, Mik EG. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion. 2013;13:507–14.CrossRef
25.
go back to reference Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al. Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol. 2009;46:943–51.CrossRef Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al. Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol. 2009;46:943–51.CrossRef
26.
go back to reference Mik EG. Special article: measuring mitochondrial oxygen tension: from basic principles to application in humans. Anesth Analg. 2013;117:834–46.CrossRef Mik EG. Special article: measuring mitochondrial oxygen tension: from basic principles to application in humans. Anesth Analg. 2013;117:834–46.CrossRef
27.
go back to reference Bodmer SI, Balestra GM, Harms FA, Johannes T, Raat NJ, Stolker RJ, et al. Microvascular and mitochondrial PO(2) simultaneously measured by oxygen-dependent delayed luminescence. J Biophotonics. 2012;5:140–51.CrossRef Bodmer SI, Balestra GM, Harms FA, Johannes T, Raat NJ, Stolker RJ, et al. Microvascular and mitochondrial PO(2) simultaneously measured by oxygen-dependent delayed luminescence. J Biophotonics. 2012;5:140–51.CrossRef
28.
go back to reference Golub AS, Popel AS, Zheng L, Pittman RN. Analysis of phosphorescence in heterogeneous systems using distributions of quencher concentration. Biophys J. 1997;73:452–65.CrossRef Golub AS, Popel AS, Zheng L, Pittman RN. Analysis of phosphorescence in heterogeneous systems using distributions of quencher concentration. Biophys J. 1997;73:452–65.CrossRef
29.
go back to reference Kopprasch S, Horkner U, Orlik H, Kemmer C, Scheuch DW. Energy state, glycolytic intermediates and mitochondrial function in the liver during reversible and irreversible endotoxin shock. Biomed Biochim Acta. 1989;48:653–9.PubMed Kopprasch S, Horkner U, Orlik H, Kemmer C, Scheuch DW. Energy state, glycolytic intermediates and mitochondrial function in the liver during reversible and irreversible endotoxin shock. Biomed Biochim Acta. 1989;48:653–9.PubMed
30.
go back to reference Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res. 2004;64:279–88.CrossRef Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res. 2004;64:279–88.CrossRef
31.
go back to reference Vanasco V, Magnani ND, Cimolai MC, Valdez LB, Evelson P, Boveris A, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr. 2012;44:243–52.CrossRef Vanasco V, Magnani ND, Cimolai MC, Valdez LB, Evelson P, Boveris A, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr. 2012;44:243–52.CrossRef
32.
go back to reference Harms FA, Bodmer SI, Raat NJ, Mik EG. Cutaneous mitochondrial respirometry: non-invasive monitoring of mitochondrial function. J Clin Monit Comput. 2015;29(4):509-19.CrossRef Harms FA, Bodmer SI, Raat NJ, Mik EG. Cutaneous mitochondrial respirometry: non-invasive monitoring of mitochondrial function. J Clin Monit Comput. 2015;29(4):509-19.CrossRef
33.
go back to reference Roszinski S, Schmeller W. Differences between intracutaneous and transcutaneous skin oxygen-tension in chronic venous insufficiency. J Cardiovasc Surg. 1995;36:407–13. Roszinski S, Schmeller W. Differences between intracutaneous and transcutaneous skin oxygen-tension in chronic venous insufficiency. J Cardiovasc Surg. 1995;36:407–13.
34.
go back to reference Marquardt C, Bolke E, Gerber PA, Kukova G, Peiper M, Rusnak E, et al. Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion. Eur J Med Res. 2009;14:480–6.CrossRef Marquardt C, Bolke E, Gerber PA, Kukova G, Peiper M, Rusnak E, et al. Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion. Eur J Med Res. 2009;14:480–6.CrossRef
Metadata
Title
Non-invasive monitoring of mitochondrial oxygenation and respiration in critical illness using a novel technique
Authors
Floor A. Harms
Sander I. A. Bodmer
Nicolaas J.H. Raat
Egbert G. Mik
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-1056-9

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue