Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

When do confounding by indication and inadequate risk adjustment bias critical care studies? A simulation study

Authors: Michael W Sjoding, Kaiyi Luo, Melissa A Miller, Theodore J Iwashyna

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

In critical care observational studies, when clinicians administer different treatments to sicker patients, any treatment comparisons will be confounded by differences in severity of illness between patients. We sought to investigate the extent that observational studies assessing treatments are at risk of incorrectly concluding such treatments are ineffective or even harmful due to inadequate risk adjustment.

Methods

We performed Monte Carlo simulations of observational studies evaluating the effect of a hypothetical treatment on mortality in critically ill patients. We set the treatment to have either no association with mortality or to have a truly beneficial effect, but more often administered to sicker patients. We varied the strength of the treatment’s true effect, strength of confounding, study size, patient population, and accuracy of the severity of illness risk-adjustment (area under the receiver operator characteristics curve, AUROC). We measured rates in which studies made inaccurate conclusions about the treatment’s true effect due to confounding, and the measured odds ratios for mortality for such false associations.

Results

Simulated observational studies employing adequate risk-adjustment were generally able to measure a treatment’s true effect. As risk-adjustment worsened, rates of studies incorrectly concluding the treatment provided no benefit or harm increased, especially when sample size was large (n = 10,000). Even in scenarios of only low confounding, studies using the lower accuracy risk-adjustors (AUROC < 0.66) falsely concluded that a beneficial treatment was harmful. Measured odds ratios for mortality of 1.4 or higher were possible when the treatment’s true beneficial effect was an odds ratio for mortality of 0.6 or 0.8.

Conclusions

Large observational studies confounded by severity of illness have a high likelihood of obtaining incorrect results even after employing conventionally “acceptable” levels of risk-adjustment, with large effect sizes that may be construed as true associations. Reporting the AUROC of the risk-adjustment used in the analysis may facilitate an evaluation of a study’s risk for confounding.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.CrossRef Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.CrossRef
2.
go back to reference Rubenfeld GD, Angus DC, Pinsky MR, Curtis JR, Connors Jr AF, Bernard GR. Outcomes research in critical care: results of the American Thoracic Society Critical Care Assembly Workshop on Outcomes Research. The Members of the Outcomes Research Workshop. Am J Respir Crit Care Med. 1999;160:358–67.CrossRef Rubenfeld GD, Angus DC, Pinsky MR, Curtis JR, Connors Jr AF, Bernard GR. Outcomes research in critical care: results of the American Thoracic Society Critical Care Assembly Workshop on Outcomes Research. The Members of the Outcomes Research Workshop. Am J Respir Crit Care Med. 1999;160:358–67.CrossRef
4.
go back to reference Cook SF, Visscher WA, Hobbs CL, Williams RL. Project IMPACT: results from a pilot validity study of a new observational database. Crit Care Med. 2002;30:2765–70.CrossRef Cook SF, Visscher WA, Hobbs CL, Williams RL. Project IMPACT: results from a pilot validity study of a new observational database. Crit Care Med. 2002;30:2765–70.CrossRef
5.
go back to reference Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med. 2011;39:952–60.CrossRef Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med. 2011;39:952–60.CrossRef
6.
go back to reference Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med. 2013;187:1157–60.CrossRef Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med. 2013;187:1157–60.CrossRef
7.
go back to reference Miettinen OS. The need for randomization in the study of intended effects. Stat Med. 1983;2:267–71.CrossRef Miettinen OS. The need for randomization in the study of intended effects. Stat Med. 1983;2:267–71.CrossRef
8.
go back to reference Walker AM. Confounding by indication. Epidemiology. 1996;7:335–6.PubMed Walker AM. Confounding by indication. Epidemiology. 1996;7:335–6.PubMed
9.
go back to reference Wunsch H, Linde-Zwirble WT, Angus DC. Methods to adjust for bias and confounding in critical care health services research involving observational data. J Crit Care. 2006;21:1–7.CrossRef Wunsch H, Linde-Zwirble WT, Angus DC. Methods to adjust for bias and confounding in critical care health services research involving observational data. J Crit Care. 2006;21:1–7.CrossRef
10.
go back to reference Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34:1297–310.CrossRef Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34:1297–310.CrossRef
11.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef
12.
go back to reference Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 1993;270:2478–86.CrossRef Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 1993;270:2478–86.CrossRef
13.
go back to reference Render ML, Deddens J, Freybeg R, Almenoff P, Connors AF, Douglas W, et al. Veterans Affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med. 2008;36:1031–42. Render ML, Deddens J, Freybeg R, Almenoff P, Connors AF, Douglas W, et al. Veterans Affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med. 2008;36:1031–42.
14.
go back to reference Cooke CR, Kahn JM, Caldwell E, Okamoto VN, Heckbert SR, Hudson LD, et al. Predictors of hospital mortality in a population-based cohort of patients with acute lung injury. Crit Care Med. 2008;36:1412–20.CrossRef Cooke CR, Kahn JM, Caldwell E, Okamoto VN, Heckbert SR, Hudson LD, et al. Predictors of hospital mortality in a population-based cohort of patients with acute lung injury. Crit Care Med. 2008;36:1412–20.CrossRef
15.
go back to reference Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, et al. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database*. Crit Care Med. 2014;42:1969–76.CrossRef Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, et al. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database*. Crit Care Med. 2014;42:1969–76.CrossRef
16.
go back to reference Sinuff T, Adhikari NK, Cook DJ, Schunemann HJ, Griffith LE, Rocker G, et al. Mortality predictions in the intensive care unit: comparing physicians with scoring systems. Crit Care Med. 2006;34:878–85.CrossRef Sinuff T, Adhikari NK, Cook DJ, Schunemann HJ, Griffith LE, Rocker G, et al. Mortality predictions in the intensive care unit: comparing physicians with scoring systems. Crit Care Med. 2006;34:878–85.CrossRef
17.
go back to reference Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006;25:4279–92.CrossRef Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006;25:4279–92.CrossRef
18.
go back to reference Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–22.CrossRef Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–22.CrossRef
19.
go back to reference Harhay MO, Wagner J, Ratcliffe SJ, Bronheim RS, Gopal A, Green S, et al. Outcomes and statistical power in adult critical care randomized trials. Am J Respir Crit Care Med. 2014;189:1469–78.CrossRef Harhay MO, Wagner J, Ratcliffe SJ, Bronheim RS, Gopal A, Green S, et al. Outcomes and statistical power in adult critical care randomized trials. Am J Respir Crit Care Med. 2014;189:1469–78.CrossRef
20.
go back to reference Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365:82–93.CrossRef Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365:82–93.CrossRef
21.
go back to reference Dreyfuss D. Beyond randomized, controlled trials. Curr Opin Crit Care. 2004;10:574–8.CrossRef Dreyfuss D. Beyond randomized, controlled trials. Curr Opin Crit Care. 2004;10:574–8.CrossRef
22.
go back to reference Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–8.CrossRef Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–8.CrossRef
23.
go back to reference Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–92.CrossRef Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–92.CrossRef
24.
go back to reference Kuzniewicz MW, Vasilevskis EE, Lane R, Dean ML, Trivedi NG, Rennie DJ, et al. Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders. Chest. 2008;133:1319–27.CrossRef Kuzniewicz MW, Vasilevskis EE, Lane R, Dean ML, Trivedi NG, Rennie DJ, et al. Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders. Chest. 2008;133:1319–27.CrossRef
25.
go back to reference Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C. A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res. 2009;9:129.CrossRef Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C. A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res. 2009;9:129.CrossRef
26.
go back to reference Brown MC, Crede WB. Predictive ability of acute physiology and chronic health evaluation II scoring applied to human immunodeficiency virus-positive patients. Crit Care Med. 1995;23:848–53.CrossRef Brown MC, Crede WB. Predictive ability of acute physiology and chronic health evaluation II scoring applied to human immunodeficiency virus-positive patients. Crit Care Med. 1995;23:848–53.CrossRef
27.
go back to reference Fedullo AJ, Swinburne AJ, Wahl GW, Bixby KR. APACHE II score and mortality in respiratory failure due to cardiogenic pulmonary edema. Crit Care Med. 1988;16:1218–21.CrossRef Fedullo AJ, Swinburne AJ, Wahl GW, Bixby KR. APACHE II score and mortality in respiratory failure due to cardiogenic pulmonary edema. Crit Care Med. 1988;16:1218–21.CrossRef
28.
go back to reference McAnena OJ, Moore FA, Moore EE, Mattox KL, Marx JA, Pepe P. Invalidation of the APACHE II scoring system for patients with acute trauma. J Trauma. 1992;33:504–6. discussion 506–507.CrossRef McAnena OJ, Moore FA, Moore EE, Mattox KL, Marx JA, Pepe P. Invalidation of the APACHE II scoring system for patients with acute trauma. J Trauma. 1992;33:504–6. discussion 506–507.CrossRef
29.
go back to reference Iwashyna TJ, Liu V. What’s so different about big data? A primer for clinicians trained to think epidemiologically. Ann Am Thorac Soc. 2014;11:1130–5.CrossRef Iwashyna TJ, Liu V. What’s so different about big data? A primer for clinicians trained to think epidemiologically. Ann Am Thorac Soc. 2014;11:1130–5.CrossRef
Metadata
Title
When do confounding by indication and inadequate risk adjustment bias critical care studies? A simulation study
Authors
Michael W Sjoding
Kaiyi Luo
Melissa A Miller
Theodore J Iwashyna
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0923-8

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue