Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock

Authors: Pierre-Grégoire Guinot, Eugénie Bernard, Mélanie Levrard, Hervé Dupont, Emmanuel Lorne

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Gradual reduction of the dosage of norepinephrine (NE) in patients with septic shock is usually left to the physician’s discretion. No hemodynamic indicator predictive of the possibility of decreasing the NE dosage is currently available at the bedside. The respiratory pulse pressure variation/respiratory stroke volume variation (dynamic arterial elastance (Eadyn)) ratio has been proposed as an indicator of vascular tone. The purpose of this study was to determine whether Eadyn can be used to predict the decrease in arterial pressure when decreasing the NE dosage in resuscitated sepsis patients.

Methods

A prospective study was carried out in a university hospital intensive care unit. All consecutive patients with septic shock monitored by PICCO2 for whom the intensive care physician planned to decrease the NE dosage were enrolled. Measurements of hemodynamic and PICCO2 variables were obtained before/after decreasing the NE dosage. Responders were defined by a >15% decrease in mean arterial pressure (MAP).

Results

In total, 35 patients were included. MAP decreased by >15% after decreasing the NE dosage in 37% of patients (n = 13). Clinical characteristics appeared to be similar between responders and nonresponders. Eadyn was lower in responders than in nonresponders (0.75 (0.69 to 0.85) versus 1 (0. 83 to 1.22), P <0.05). Baseline Eadyn was correlated with NE-induced MAP variations (r = 0.47, P = 0.005). An Eadyn less than 0.94 predicted a decrease in arterial pressure, with an area under the receiver-operating characteristic curve of 0.87 (95% confidence interval (95% CI): 0.72 to 0.96; P <0.0001), 100% sensitivity, and 68% specificity.

Conclusions

In sepsis patients treated with NE, Eadyn may predict the decrease in arterial pressure in response to NE dose reduction. Eadyn may constitute an easy-to-use functional approach to arterial-tone assessment, which may be helpful to identify patients likely to benefit from NE dose reduction.
Literature
1.
go back to reference Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.CrossRef Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.CrossRef
2.
go back to reference Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef
3.
go back to reference De Backer D, Biston P, Devriendt J, Madi C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef De Backer D, Biston P, Devriendt J, Madi C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef
4.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2013;41:580–637.CrossRef Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2013;41:580–637.CrossRef
5.
go back to reference Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.CrossRef Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.CrossRef
6.
go back to reference Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med. 1999;160:1987–93.CrossRef Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med. 1999;160:1987–93.CrossRef
7.
go back to reference Imai Y, Satoh K, Taira N. Role of the peripheral vasculature in changes in venous return caused by isoproterenol, norepinephrine, and methoxamine in anesthetized dogs. Circ Res. 1978;43:553–61.CrossRef Imai Y, Satoh K, Taira N. Role of the peripheral vasculature in changes in venous return caused by isoproterenol, norepinephrine, and methoxamine in anesthetized dogs. Circ Res. 1978;43:553–61.CrossRef
8.
go back to reference Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14:R142.CrossRef Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14:R142.CrossRef
9.
go back to reference Merouani M, Guignard B, Vincent F, Borron SW, Karoubi P, Fosse JP, et al. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic. Crit Care. 2008;12:R155.CrossRef Merouani M, Guignard B, Vincent F, Borron SW, Karoubi P, Fosse JP, et al. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic. Crit Care. 2008;12:R155.CrossRef
10.
go back to reference Pinsky MR. Functional hemodynamic monitoring: applied physiology at the bedside. In: Vincent JL, editor. Yearbook of Intensive Care and Emergency Medicine. Heidelberg, Germany: Springer-Verlag; 2012. p. 534–51. Pinsky MR. Functional hemodynamic monitoring: applied physiology at the bedside. In: Vincent JL, editor. Yearbook of Intensive Care and Emergency Medicine. Heidelberg, Germany: Springer-Verlag; 2012. p. 534–51.
11.
go back to reference Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18:256–60.CrossRef Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18:256–60.CrossRef
12.
go back to reference Monge García MI, Gil Cano A, GraciaRomero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.CrossRef Monge García MI, Gil Cano A, GraciaRomero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.CrossRef
13.
go back to reference Vos JJ, Kalmar AF, Struys MM, Wietasch JK, Hendriks HG, Scheeren TW. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110:940–6.CrossRef Vos JJ, Kalmar AF, Struys MM, Wietasch JK, Hendriks HG, Scheeren TW. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110:940–6.CrossRef
14.
go back to reference Pinsky MR. Defining the boundaries of bedside pulse contour analysis: dynamic arterial elastance. Crit Care. 2011;15:120.CrossRef Pinsky MR. Defining the boundaries of bedside pulse contour analysis: dynamic arterial elastance. Crit Care. 2011;15:120.CrossRef
15.
go back to reference Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.CrossRef Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.CrossRef
16.
go back to reference Hadian M, Severyn D, Pinsky MR. The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients. J Crit Care. 2011;26:328.CrossRef Hadian M, Severyn D, Pinsky MR. The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients. J Crit Care. 2011;26:328.CrossRef
17.
go back to reference Hallock P, Benson IC. Studies on the elastic properties of human isolated aorta. J Clin Invest. 1937;16:595–602.CrossRef Hallock P, Benson IC. Studies on the elastic properties of human isolated aorta. J Clin Invest. 1937;16:595–602.CrossRef
18.
go back to reference Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39:689–94.CrossRef Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39:689–94.CrossRef
19.
go back to reference Maas JJ, de Wilde RB, Aarts LP, Pinsky MR, Jansen JR. Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit. Anesth Analg. 2012;114:803–10.CrossRef Maas JJ, de Wilde RB, Aarts LP, Pinsky MR, Jansen JR. Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit. Anesth Analg. 2012;114:803–10.CrossRef
20.
go back to reference Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.CrossRef Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.CrossRef
21.
go back to reference Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care. 2009;213:R133.CrossRef Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care. 2009;213:R133.CrossRef
22.
go back to reference Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2014; Doi:10.1213/ANE.0000000000000442. Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2014; Doi:10.1213/ANE.0000000000000442.
23.
go back to reference Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies, with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.CrossRef Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies, with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.CrossRef
Metadata
Title
Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock
Authors
Pierre-Grégoire Guinot
Eugénie Bernard
Mélanie Levrard
Hervé Dupont
Emmanuel Lorne
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-014-0732-5

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue