Skip to main content
Top
Published in: Hereditary Cancer in Clinical Practice 1/2021

Open Access 01-12-2021 | Melanoma | Case report

Clinical challenges in interpreting multiple pathogenic mutations in single patients

Authors: Christa Slaught, Elizabeth G. Berry, Lindsay Bacik, Alison H. Skalet, George Anadiotis, Therese Tuohy, Sancy A. Leachman

Published in: Hereditary Cancer in Clinical Practice | Issue 1/2021

Login to get access

Abstract

Background

In the past two decades, genetic testing for cancer risk assessment has entered mainstream clinical practice due to the availability of low-cost panels of multiple cancer-associated genes. However, the clinical value of multiple-gene panels for cancer susceptibility is not well established, especially in cases where panel testing identifies more than one pathogenic variant. The risk for specific malignancies as a result of a mutated gene is complex and likely influenced by superimposed modifier variants and/or environmental effects. Recent data suggests that the combination of multiple pathogenic variants may be fewer than reported by chance, suggesting that some mutation combinations may be detrimental. Management of patients with “incidentally” discovered mutations can be particularly challenging, especially when established guidelines call for radical procedures (e.g. total gastrectomy in CDH1) in patients and families without a classic clinical history concerning for that cancer predisposition syndrome.

Case presentation

We present two cases, one of an individual and one of a family, with multiple pathogenic mutations detected by multi-gene panel testing to highlight challenges practitioners face in counseling patients about pathogenic variants and determining preventive and therapeutic interventions.

Conclusions

Ongoing investigation is needed to improve our understanding of inherited susceptibility to disease in general and cancer predisposition syndromes, as this information has the potential to lead to the development of more precise and patient-specific counseling and surveillance strategies. The real-world adoption of new or improved technologies into clinical practice frequently requires medical decision-making in the absence of established understanding of gene-gene interactions. In the meantime, practitioners must be prepared to apply a rationale based on currently available knowledge to clinical decision-making. Current practice is evolving to rely heavily on clinical concordance with personal and family history in making specific therapeutic decisions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Espenschied CR, LaDuca H, Li S, McFarland R, Gau C-L, Hampel H. Multigene panel testing provides a new perspective on lynch syndrome. J Clin Oncol. 2017;35(22):2568–75.CrossRef Espenschied CR, LaDuca H, Li S, McFarland R, Gau C-L, Hampel H. Multigene panel testing provides a new perspective on lynch syndrome. J Clin Oncol. 2017;35(22):2568–75.CrossRef
2.
go back to reference Palmirotta R, Lovero D, Stucci LS, Silvestris E, Quaresmini D, Cardascia A, Silvestris F. Double heterozygosity for BRCA1 pathogenic variant and BRCA2 polymorphic stop codon K3326X: a case report in a southern Italian family. Int J Mol Sci. 2018;19(1):285.CrossRef Palmirotta R, Lovero D, Stucci LS, Silvestris E, Quaresmini D, Cardascia A, Silvestris F. Double heterozygosity for BRCA1 pathogenic variant and BRCA2 polymorphic stop codon K3326X: a case report in a southern Italian family. Int J Mol Sci. 2018;19(1):285.CrossRef
3.
go back to reference Esplin, E. Increasing Access for Patients With Pancreatic Cancer to Germline Genetic Testing: Clinical Impact Across Disease Stage and Ethnicity. Oral presenation at: 39th Annual National Society of Genetic Counselors Meeting; November 2020; Virtual. Esplin, E. Increasing Access for Patients With Pancreatic Cancer to Germline Genetic Testing: Clinical Impact Across Disease Stage and Ethnicity. Oral presenation at: 39th Annual National Society of Genetic Counselors Meeting; November 2020; Virtual.
4.
go back to reference Peltomäki P. Update on lynch syndrome. Familial Cancer. 2016;15(3):385–93.CrossRef Peltomäki P. Update on lynch syndrome. Familial Cancer. 2016;15(3):385–93.CrossRef
5.
go back to reference Thompson BA, Spurdle AB, Plazzer J-P, et al. Application of a five-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants lodged on the InSiGHT locus-specific database. Nat Genet. 2014;46(2):107–15.CrossRef Thompson BA, Spurdle AB, Plazzer J-P, et al. Application of a five-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants lodged on the InSiGHT locus-specific database. Nat Genet. 2014;46(2):107–15.CrossRef
6.
go back to reference Maxwell KN, Hart SN, Vijai J, et al. Evaluation of ACMG-guideline-based variant classification of Cancer susceptibility and non-Cancer-associated genes in families affected by breast Cancer. Am J Hum Genet. 2016;98(5):801–17.CrossRef Maxwell KN, Hart SN, Vijai J, et al. Evaluation of ACMG-guideline-based variant classification of Cancer susceptibility and non-Cancer-associated genes in families affected by breast Cancer. Am J Hum Genet. 2016;98(5):801–17.CrossRef
7.
go back to reference Nykamp K, Anderson M, Powers M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105–17.CrossRef Nykamp K, Anderson M, Powers M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105–17.CrossRef
8.
go back to reference Weitzel JN, Blazer KR, Nehoray B, et al. Assessment of the clinical presentations of patients with at least two deleterious mutations on multi-gene panel testing. J Clin Oncol. 2015;33(15):1514.CrossRef Weitzel JN, Blazer KR, Nehoray B, et al. Assessment of the clinical presentations of patients with at least two deleterious mutations on multi-gene panel testing. J Clin Oncol. 2015;33(15):1514.CrossRef
9.
go back to reference Wang XY, Wang Z, Huang JB, et al. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol. 2017;39(6):1010428317699111.PubMed Wang XY, Wang Z, Huang JB, et al. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol. 2017;39(6):1010428317699111.PubMed
10.
go back to reference Ransohoff KJ, Jaju PD, Tang JY, Carbone M, Leachman S, Sarin K. Familial skin cancer syndromes: increased melanoma risk. J Am Acad Dermatol. 2016;74(3):423–34.CrossRef Ransohoff KJ, Jaju PD, Tang JY, Carbone M, Leachman S, Sarin K. Familial skin cancer syndromes: increased melanoma risk. J Am Acad Dermatol. 2016;74(3):423–34.CrossRef
11.
go back to reference Rojek NW, Korcheva V, Leachman SA. A large skin-colored nodule on the plantar foot: a quiz. Acta Derm Venerol. 2017;97(10):1265–6.CrossRef Rojek NW, Korcheva V, Leachman SA. A large skin-colored nodule on the plantar foot: a quiz. Acta Derm Venerol. 2017;97(10):1265–6.CrossRef
12.
go back to reference Carbone M, Ferris LK, Baumann F, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.CrossRef Carbone M, Ferris LK, Baumann F, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.CrossRef
13.
go back to reference Masoomian B, Shields JA, Shields CL. Overview of BAP1 cancer predisposition syndrome and the relationship to uveal melanoma. J Curr Ophthalmol. 2018;30(2):102–9.CrossRef Masoomian B, Shields JA, Shields CL. Overview of BAP1 cancer predisposition syndrome and the relationship to uveal melanoma. J Curr Ophthalmol. 2018;30(2):102–9.CrossRef
14.
go back to reference Chau C, van Doorn R, van Poppelen NM, van der Stoep N, Mensenkamp AR, Sijmons RH, van Paassen BW, van den Ouweland AMW, Naus NC, van der Hout AH, Potjer TP, Bleeker FE, Wevers MR, van Hest LP, MCJ J, Marinkovic M, Bleeker JC, Jager MJ, GPM L, Nielsen M. Families with BAP1-Tumor Predisposition Syndrome in The Netherlands: Path to Identification and a Proposal for Genetic Screening Guidelines. Cancers (Basel). 2019;11(8):1114. https://doi.org/10.3390/cancers11081114 PMID: 31382694; PMCID: PMC6721807.CrossRef Chau C, van Doorn R, van Poppelen NM, van der Stoep N, Mensenkamp AR, Sijmons RH, van Paassen BW, van den Ouweland AMW, Naus NC, van der Hout AH, Potjer TP, Bleeker FE, Wevers MR, van Hest LP, MCJ J, Marinkovic M, Bleeker JC, Jager MJ, GPM L, Nielsen M. Families with BAP1-Tumor Predisposition Syndrome in The Netherlands: Path to Identification and a Proposal for Genetic Screening Guidelines. Cancers (Basel). 2019;11(8):1114. https://​doi.​org/​10.​3390/​cancers11081114 PMID: 31382694; PMCID: PMC6721807.CrossRef
15.
go back to reference Pilarski R, Cebulla CM, Massengill JB, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53(2):177–82.CrossRef Pilarski R, Cebulla CM, Massengill JB, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53(2):177–82.CrossRef
16.
go back to reference Leachman SA, Lucero OM, Sampson JE, et al. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36(1):77–90.CrossRef Leachman SA, Lucero OM, Sampson JE, et al. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36(1):77–90.CrossRef
17.
go back to reference Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with Germline mutations in genes in lynch syndrome. JAMA. 2011;305(22):2304–10.CrossRef Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with Germline mutations in genes in lynch syndrome. JAMA. 2011;305(22):2304–10.CrossRef
18.
go back to reference Kastrinos F, Stoffel EM. History, genetics, and strategies for cancer prevention in lynch syndrome. Clin Gastroenterol Hepatol. 2014;12(5):715–27.CrossRef Kastrinos F, Stoffel EM. History, genetics, and strategies for cancer prevention in lynch syndrome. Clin Gastroenterol Hepatol. 2014;12(5):715–27.CrossRef
19.
go back to reference Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics. 1998;54(3):443–52.CrossRef Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics. 1998;54(3):443–52.CrossRef
20.
go back to reference Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 1999;22(1):82–4.CrossRef Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 1999;22(1):82–4.CrossRef
21.
go back to reference Schurman SH, Hedayati M, Wang Z, et al. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Molec Genet. 2009;18(18):3470–83.CrossRef Schurman SH, Hedayati M, Wang Z, et al. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Molec Genet. 2009;18(18):3470–83.CrossRef
22.
go back to reference Yin J, Kwon YT, Varshavsky A, Wang W. RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Molec Genet. 2004;13(20):2421–30.CrossRef Yin J, Kwon YT, Varshavsky A, Wang W. RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Molec Genet. 2004;13(20):2421–30.CrossRef
23.
go back to reference Croteau DL, Singh DK, Ferrarelli LH, Lu H, Bohr VA. RECQL4 in genomic instability and aging. Trends Genet. 2012;28(12):624–31.CrossRef Croteau DL, Singh DK, Ferrarelli LH, Lu H, Bohr VA. RECQL4 in genomic instability and aging. Trends Genet. 2012;28(12):624–31.CrossRef
24.
go back to reference Siitonen HA, Sotkasiira J, Biervliet M, et al. The mutation spectrum in RECQL4 diseases. J Hum Genet. 2009;17(2):151–8.CrossRef Siitonen HA, Sotkasiira J, Biervliet M, et al. The mutation spectrum in RECQL4 diseases. J Hum Genet. 2009;17(2):151–8.CrossRef
25.
go back to reference Stinco G, Governatori G, Mattighello P, Patrone P. Multiple cutaneous neoplasms in a patient with Rothmund-Thomson syndrome: case report and published work review. J Dermatol. 2008;35(3):154–61.CrossRef Stinco G, Governatori G, Mattighello P, Patrone P. Multiple cutaneous neoplasms in a patient with Rothmund-Thomson syndrome: case report and published work review. J Dermatol. 2008;35(3):154–61.CrossRef
26.
go back to reference Maciaszek JL, Oak N, Chen W, Hamilton KV, RB MG, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, Gerhardt EL, Ouma A, Edmonson MN, Patel A, Nakitandwe J, Pappo AS, Azzato EM, Shurtleff SA, Ellison DW, Downing JR, Hudson MM, Robison LL, Santana V, Newman S, Zhang J, Wang Z, Wu G, Nichols KE, Kesserwan CA. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud. 2019;5(5):a004218. https://doi.org/10.1101/mcs.a004218 PMID: 31604778; PMCID: PMC6824257.CrossRefPubMedPubMedCentral Maciaszek JL, Oak N, Chen W, Hamilton KV, RB MG, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, Gerhardt EL, Ouma A, Edmonson MN, Patel A, Nakitandwe J, Pappo AS, Azzato EM, Shurtleff SA, Ellison DW, Downing JR, Hudson MM, Robison LL, Santana V, Newman S, Zhang J, Wang Z, Wu G, Nichols KE, Kesserwan CA. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud. 2019;5(5):a004218. https://​doi.​org/​10.​1101/​mcs.​a004218 PMID: 31604778; PMCID: PMC6824257.CrossRefPubMedPubMedCentral
27.
go back to reference Kurian AW, Ward KC, Howlander N, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305–15.CrossRef Kurian AW, Ward KC, Howlander N, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305–15.CrossRef
28.
go back to reference Crawford B, Adams SB, Sittler T, et al. Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat. 2017;163(2):383–90.CrossRef Crawford B, Adams SB, Sittler T, et al. Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat. 2017;163(2):383–90.CrossRef
29.
go back to reference Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J Clin Oncol. 2013;31(10):1267–70.CrossRef Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J Clin Oncol. 2013;31(10):1267–70.CrossRef
30.
go back to reference DaLuca H, Stuenkel A, Dolinsky JS, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2000 patients. Genet Med. 2014;16(11):830–7.CrossRef DaLuca H, Stuenkel A, Dolinsky JS, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2000 patients. Genet Med. 2014;16(11):830–7.CrossRef
31.
go back to reference Yurgelun MB, Allen B, Kaldate RR, et al. Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology. 2015;149(3):604.CrossRef Yurgelun MB, Allen B, Kaldate RR, et al. Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology. 2015;149(3):604.CrossRef
32.
go back to reference van Puijenbroek M, Nielsen M, Reinards TH, et al. The natural history of a combined defect in MSH6 and MUTYH in a HNPCC family. Familial Cancer. 2007;6(1):43–51.CrossRef van Puijenbroek M, Nielsen M, Reinards TH, et al. The natural history of a combined defect in MSH6 and MUTYH in a HNPCC family. Familial Cancer. 2007;6(1):43–51.CrossRef
33.
go back to reference Pearlman R, Frankel WL, Swanson B, et al. Prevalence and Spectrum of Germline Cancer susceptibility gene mutations among patients with early-onset colorectal Cancer. JAMA Oncol. 2017;3(4):464–71.CrossRef Pearlman R, Frankel WL, Swanson B, et al. Prevalence and Spectrum of Germline Cancer susceptibility gene mutations among patients with early-onset colorectal Cancer. JAMA Oncol. 2017;3(4):464–71.CrossRef
34.
go back to reference Chatrath A, Przanowska R, Kiran S, et al. The pan-Cancer landscape of prognostic Germline variants in 10,582 patients. Genome Med. 2020;12(1):15.CrossRef Chatrath A, Przanowska R, Kiran S, et al. The pan-Cancer landscape of prognostic Germline variants in 10,582 patients. Genome Med. 2020;12(1):15.CrossRef
35.
go back to reference Benitez-Buelga C, Vaclová T, Ferreira S, et al. Molecular insights into the OGG1 gene, a Cancer risk modifier in BRCA1 and BRCA2 mutations carriers. Oncotarget. 2016;7(18):25815–25.CrossRef Benitez-Buelga C, Vaclová T, Ferreira S, et al. Molecular insights into the OGG1 gene, a Cancer risk modifier in BRCA1 and BRCA2 mutations carriers. Oncotarget. 2016;7(18):25815–25.CrossRef
36.
go back to reference Box N, Duffy D, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69(4):765–73.CrossRef Box N, Duffy D, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69(4):765–73.CrossRef
37.
go back to reference Okkels H, Sunde L, Lindorff-Larsen K, et al. Polyposis and early Cancer in a patient with low penetrant mutations in MSH6 and APC: hereditary colorectal Cancer as a polygenic trait. Int J Color Dis. 2006;21(8):847–50.CrossRef Okkels H, Sunde L, Lindorff-Larsen K, et al. Polyposis and early Cancer in a patient with low penetrant mutations in MSH6 and APC: hereditary colorectal Cancer as a polygenic trait. Int J Color Dis. 2006;21(8):847–50.CrossRef
38.
go back to reference Sarasin A, Kauffmann A. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res. 2008;659(1–2):49–55.CrossRef Sarasin A, Kauffmann A. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res. 2008;659(1–2):49–55.CrossRef
39.
go back to reference Alvino E, Passarelli F, Cannavò E, Fortes C, Mastroeni S. High expression of the mismatch repair protein MSH6 is associated with poor patient survival in melanoma. Am J Clin Pathol. 2014;142(1):121–32.CrossRef Alvino E, Passarelli F, Cannavò E, Fortes C, Mastroeni S. High expression of the mismatch repair protein MSH6 is associated with poor patient survival in melanoma. Am J Clin Pathol. 2014;142(1):121–32.CrossRef
40.
go back to reference Chen R, Shi L, Hakenberg J, Naughton B, Sklar P. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–8.CrossRef Chen R, Shi L, Hakenberg J, Naughton B, Sklar P. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–8.CrossRef
41.
go back to reference Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN. Gene panel testing for inherited Cancer risk. J Natl Compr Cancer Netw. 2014;12(9):1339–46.CrossRef Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN. Gene panel testing for inherited Cancer risk. J Natl Compr Cancer Netw. 2014;12(9):1339–46.CrossRef
Metadata
Title
Clinical challenges in interpreting multiple pathogenic mutations in single patients
Authors
Christa Slaught
Elizabeth G. Berry
Lindsay Bacik
Alison H. Skalet
George Anadiotis
Therese Tuohy
Sancy A. Leachman
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
Hereditary Cancer in Clinical Practice / Issue 1/2021
Electronic ISSN: 1897-4287
DOI
https://doi.org/10.1186/s13053-021-00172-3

Other articles of this Issue 1/2021

Hereditary Cancer in Clinical Practice 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine