Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2015

Open Access 01-12-2015 | Research

Early and late Iron supplementation for low birth weight infants: a meta-analysis

Authors: Hong-Xing Jin, Rong-Shan Wang, Shu-Jun Chen, Ai-Ping Wang, Xi-Yong Liu

Published in: Italian Journal of Pediatrics | Issue 1/2015

Login to get access

Abstract

Background

Iron deficiency in infancy is associated with a range of clinical and developmentally important issues. Currently, it is unclear what is the optimal timing to administer prophylactic enteral iron supplementation in preterm and very low birth weight infants. The objective of this meta-analysis was to evaluate early compared with late iron supplementation in low birth weight infants.

Methods

PubMed and Cochrane Library databases were searched up to May 10, 2014 for studies that compared the benefit of early and late iron supplementation in infants of low birth weight. Sensitivity analysis was carried out using the leave one-out approach and the quality of the included data was assessed.

Results

The data base search and detailed review identified four studies that were included in the meta-analysis. The number of included patients was 246 (n = 121 for early supplementation and n = 125 for late supplementation) and the majority were premature infants. Across studies, early supplementation ranged from as early as enteral feeding was tolerated to 3 weeks, and late supplementation ranged from 4 weeks to about 60 days. Early treatment was associated with significantly smaller decreases in serum ferritin and hemoglobin levels (P < 0.001). In addition, the rate of blood transfusions was lower with early compared with late iron supplementation (P = 0.022). There was no difference between early and late supplementation in the number of patients with nectorizing enteroclitis (>bell stage 2) (P = 0.646). Sensitivity analysis indicated no one study overly influenced the findings and that the data was reliable.

Conclusion

In conclusion, early iron supplementation resulted in less a decrease in serum ferritin and hemoglobin levels in infants with low birth rate. However, caution should be used when treating infants with iron so as not to result in iron overload and possibly negative long-term effects on neurodevelopment.
Literature
2.
go back to reference Makrides M, Anderson A, Gibson RA, Collins CT. Improving the neurodevelopmental outcomes of low-birthweight infants. Nestle Nutr Inst workshop Ser. 2013;74:211–21.CrossRefPubMed Makrides M, Anderson A, Gibson RA, Collins CT. Improving the neurodevelopmental outcomes of low-birthweight infants. Nestle Nutr Inst workshop Ser. 2013;74:211–21.CrossRefPubMed
3.
go back to reference Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age. J Trop Pediatr. 2014;60:53–60.CrossRefPubMed Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age. J Trop Pediatr. 2014;60:53–60.CrossRefPubMed
4.
go back to reference Vucic V, Berti C, Vollhardt C, Fekete K, Cetin I, Koletzko B, et al. Effect of iron intervention on growth during gestation, infancy, childhood, and adolescence: a systematic review with meta-analysis. Nutr Rev. 2013;71:386–401.CrossRefPubMed Vucic V, Berti C, Vollhardt C, Fekete K, Cetin I, Koletzko B, et al. Effect of iron intervention on growth during gestation, infancy, childhood, and adolescence: a systematic review with meta-analysis. Nutr Rev. 2013;71:386–401.CrossRefPubMed
5.
go back to reference Lundstrom U, Siimes MA, Dallman PR. At what age does iron supplementation become necessary in low-birth-weight infants? J Pediatr. 1977;91:878–83.CrossRefPubMed Lundstrom U, Siimes MA, Dallman PR. At what age does iron supplementation become necessary in low-birth-weight infants? J Pediatr. 1977;91:878–83.CrossRefPubMed
6.
go back to reference Rao R, Georgieff MK. Iron therapy for preterm infants. ClinPperinatol. 2009;36:27–42. Rao R, Georgieff MK. Iron therapy for preterm infants. ClinPperinatol. 2009;36:27–42.
7.
go back to reference Gorten MK, Cross ER. Iron Metabolism in Premature Infants. Ii. Prevention of Iron Deficiency. J Pediatr. 1964;64:509–20.CrossRefPubMed Gorten MK, Cross ER. Iron Metabolism in Premature Infants. Ii. Prevention of Iron Deficiency. J Pediatr. 1964;64:509–20.CrossRefPubMed
8.
go back to reference Long H, Yi JM, Hu PL, Li ZB, Qiu WY, Wang F, et al. Benefits of iron supplementation for low birth weight infants: a systematic review. BMC Pediatr. 2012;12:99.CrossRefPubMedCentralPubMed Long H, Yi JM, Hu PL, Li ZB, Qiu WY, Wang F, et al. Benefits of iron supplementation for low birth weight infants: a systematic review. BMC Pediatr. 2012;12:99.CrossRefPubMedCentralPubMed
9.
go back to reference Mills RJ, Davies MW. Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst Rev. 2012;3:CD005095.PubMed Mills RJ, Davies MW. Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst Rev. 2012;3:CD005095.PubMed
10.
11.
go back to reference Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91.CrossRefPubMed Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91.CrossRefPubMed
13.
go back to reference Baker RD, Greer FR, Committee on Nutrition American Academy of Pediatrics. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–50.CrossRefPubMed Baker RD, Greer FR, Committee on Nutrition American Academy of Pediatrics. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–50.CrossRefPubMed
14.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed
15.
16.
17.
go back to reference Joy R, Krishnamurthy S, Bethou A, Rajappa M, Ananthanarayanan PH, Bhat BV. Early versus late enteral prophylactic iron supplementation in preterm very low birth weight infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2014;99:F105–109.CrossRefPubMed Joy R, Krishnamurthy S, Bethou A, Rajappa M, Ananthanarayanan PH, Bhat BV. Early versus late enteral prophylactic iron supplementation in preterm very low birth weight infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2014;99:F105–109.CrossRefPubMed
18.
go back to reference Sankar MJ, Saxena R, Mani K, Agarwal R, Deorari AK, Paul VK. Early iron supplementation in very low birth weight infants–a randomized controlled trial. Acta Paediatr. 2009;98:953–8.CrossRefPubMed Sankar MJ, Saxena R, Mani K, Agarwal R, Deorari AK, Paul VK. Early iron supplementation in very low birth weight infants–a randomized controlled trial. Acta Paediatr. 2009;98:953–8.CrossRefPubMed
19.
go back to reference Arnon S, Shiff Y, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, et al. The efficacy and safety of early supplementation of iron polymaltose complex in preterm infants. Am J Perinatol. 2007;24:95–100.CrossRefPubMed Arnon S, Shiff Y, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, et al. The efficacy and safety of early supplementation of iron polymaltose complex in preterm infants. Am J Perinatol. 2007;24:95–100.CrossRefPubMed
20.
go back to reference Jansson L, Holmberg L, Ekman R. Medicinal iron to low birth weight infants. Acta Paediatr Scand. 1979;68:705–8.CrossRefPubMed Jansson L, Holmberg L, Ekman R. Medicinal iron to low birth weight infants. Acta Paediatr Scand. 1979;68:705–8.CrossRefPubMed
21.
go back to reference Franz AR, Mihatsch WA, Sander S, Kron M, Pohlandt F. Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams. Pediatrics. 2000;106:700–6.CrossRefPubMed Franz AR, Mihatsch WA, Sander S, Kron M, Pohlandt F. Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams. Pediatrics. 2000;106:700–6.CrossRefPubMed
22.
go back to reference Hall RT, Wheeler RE, Benson J, Harris G, Rippetoe L. Feeding iron-fortified premature formula during initial hospitalization to infants less than 1800 grams birth weight. Pediatrics. 1993;92(3):409–414.24.PubMed Hall RT, Wheeler RE, Benson J, Harris G, Rippetoe L. Feeding iron-fortified premature formula during initial hospitalization to infants less than 1800 grams birth weight. Pediatrics. 1993;92(3):409–414.24.PubMed
23.
go back to reference Miller SM, McPherson RJ, Juul SE. Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J Pediatr. 2006;148(1):44–8.CrossRefPubMed Miller SM, McPherson RJ, Juul SE. Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J Pediatr. 2006;148(1):44–8.CrossRefPubMed
24.
go back to reference Steinmacher J, Pohlandt F, Bode H, Sander S, Kron M, Franz AR. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years’ corrected age. Pediatrics. 2007;120:538–46.CrossRefPubMed Steinmacher J, Pohlandt F, Bode H, Sander S, Kron M, Franz AR. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years’ corrected age. Pediatrics. 2007;120:538–46.CrossRefPubMed
25.
go back to reference Ohls RK, Ehrenkranz RA, Das A, Dusick AM, Yolton K, Romano E, et al. Neurodevelopmental outcome and growth at 18 to 22 months’ corrected age in extremely low birth weight infants treated with early erythropoietin and iron. Pediatrics. 2004;114:1287–91.CrossRefPubMed Ohls RK, Ehrenkranz RA, Das A, Dusick AM, Yolton K, Romano E, et al. Neurodevelopmental outcome and growth at 18 to 22 months’ corrected age in extremely low birth weight infants treated with early erythropoietin and iron. Pediatrics. 2004;114:1287–91.CrossRefPubMed
26.
go back to reference Friel JK, Andrews WL, Aziz K, Kwa PG, Lepage G, L'Abbe MR. A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J Pediatr. 2001;139:254–60.CrossRefPubMed Friel JK, Andrews WL, Aziz K, Kwa PG, Lepage G, L'Abbe MR. A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J Pediatr. 2001;139:254–60.CrossRefPubMed
27.
go back to reference Patil SS, Khanwelkar CC, Patil SK. Conventional and newer oral iron preparations. Int J Med Pharm Sci. 2012;2:16–22. Patil SS, Khanwelkar CC, Patil SK. Conventional and newer oral iron preparations. Int J Med Pharm Sci. 2012;2:16–22.
Metadata
Title
Early and late Iron supplementation for low birth weight infants: a meta-analysis
Authors
Hong-Xing Jin
Rong-Shan Wang
Shu-Jun Chen
Ai-Ping Wang
Xi-Yong Liu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2015
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-015-0121-y

Other articles of this Issue 1/2015

Italian Journal of Pediatrics 1/2015 Go to the issue