Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2023

Open Access 01-12-2023 | Milrinone | Original research

Proarrhythmic changes in human cardiomyocytes during hypothermia by milrinone and isoprenaline, but not levosimendan: an experimental in vitro study

Authors: Anders Lund Selli, Mohammadreza Ghasemi, Taylor Watters, Francis Burton, Godfrey Smith, Erik Sveberg Dietrichs

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2023

Login to get access

Abstract

Background

Accidental hypothermia, recognized by core temperature below 35 °C, is a lethal condition with a mortality rate up to 25%. Hypothermia-induced cardiac dysfunction causing increased total peripheral resistance and reduced cardiac output contributes to the high mortality rate in this patient group. Recent studies, in vivo and in vitro, have suggested levosimendan, milrinone and isoprenaline as inotropic treatment strategies in this patient group. However, these drugs may pose increased risk of ventricular arrhythmias during hypothermia. Our aim was therefore to describe the effects of levosimendan, milrinone and isoprenaline on the action potential in human cardiomyocytes during hypothermia.

Methods

Using an experimental in vitro-design, levosimendan, milrinone and isoprenaline were incubated with iCell2 hiPSC-derived cardiomyocytes and cellular action potential waveforms and contraction were recorded from monolayers of cultured cells. Experiments were conducted at temperatures from 37 °C down to 26 °C. One-way repeated measures ANOVA was performed to evaluate differences from baseline recordings and one-way ANOVA was performed to evaluate differences between drugs, untreated control and between drug concentrations at the specific temperatures.

Results

Milrinone and isoprenaline both significantly increases action potential triangulation during hypothermia, and thereby the risk of ventricular arrhythmias. Levosimendan, however, does not increase triangulation and the contractile properties also remain preserved during hypothermia down to 26 °C.

Conclusions

Levosimendan remains a promising candidate drug for inotropic treatment of hypothermic patients as it possesses ability to treat hypothermia-induced cardiac dysfunction and no increased risk of ventricular arrhythmias is detected. Milrinone and isoprenaline, on the other hand, appears more dangerous in the hypothermic setting.
Literature
1.
go back to reference Brown DJA, Brugger H, Boyd J, Paal P. Accidental hypothermia. N Engl J Med. 2012;367(20):1930–8.PubMed Brown DJA, Brugger H, Boyd J, Paal P. Accidental hypothermia. N Engl J Med. 2012;367(20):1930–8.PubMed
2.
go back to reference Paal P, Pasquier M, Darocha T, Lechner R, Kosinski S, Wallner B, et al. Accidental hypothermia: 2021 update. Int J Environ Res Public Health. 2022;19(1):501.PubMedPubMedCentral Paal P, Pasquier M, Darocha T, Lechner R, Kosinski S, Wallner B, et al. Accidental hypothermia: 2021 update. Int J Environ Res Public Health. 2022;19(1):501.PubMedPubMedCentral
3.
go back to reference Dietrichs ES, McGlynn K, Allan A, Connolly A, Bishop M, Burton F, et al. Moderate but not severe hypothermia causes pro-arrhythmic changes in cardiac electrophysiology. Cardiovasc Res. 2020;116(13):2081–90.PubMedPubMedCentral Dietrichs ES, McGlynn K, Allan A, Connolly A, Bishop M, Burton F, et al. Moderate but not severe hypothermia causes pro-arrhythmic changes in cardiac electrophysiology. Cardiovasc Res. 2020;116(13):2081–90.PubMedPubMedCentral
4.
go back to reference Filseth OM, Kondratiev T, Sieck GC, Tveita T. Functional recovery after accidental deep hypothermic cardiac arrest: comparison of different cardiopulmonary bypass rewarming strategies. Front Physiol. 2022;13: 960652.PubMedPubMedCentral Filseth OM, Kondratiev T, Sieck GC, Tveita T. Functional recovery after accidental deep hypothermic cardiac arrest: comparison of different cardiopulmonary bypass rewarming strategies. Front Physiol. 2022;13: 960652.PubMedPubMedCentral
5.
go back to reference Takauji S, Hifumi T, Saijo Y, Yokobori S, Kanda J, Kondo Y, et al. Accidental hypothermia: characteristics, outcomes, and prognostic factors-A nationwide observational study in Japan (Hypothermia study 2018 and 2019). Acute Med Surg. 2021;8(1): e694.PubMedPubMedCentral Takauji S, Hifumi T, Saijo Y, Yokobori S, Kanda J, Kondo Y, et al. Accidental hypothermia: characteristics, outcomes, and prognostic factors-A nationwide observational study in Japan (Hypothermia study 2018 and 2019). Acute Med Surg. 2021;8(1): e694.PubMedPubMedCentral
6.
go back to reference Mohyuddin R, Dietrichs ES, Sundaram P, Kondratiev T, Figenschou MF, Sieck GC, et al. Cardiovascular effects of epinephrine during experimental hypothermia (32 °C) with spontaneous circulation in an intact porcine model. Front Physiol. 2021;12:718667.PubMedPubMedCentral Mohyuddin R, Dietrichs ES, Sundaram P, Kondratiev T, Figenschou MF, Sieck GC, et al. Cardiovascular effects of epinephrine during experimental hypothermia (32 °C) with spontaneous circulation in an intact porcine model. Front Physiol. 2021;12:718667.PubMedPubMedCentral
7.
go back to reference Håheim B, Kondratiev T, Dietrichs ES, Tveita T. Comparison between two pharmacologic strategies to alleviate rewarming shock: vasodilation vs. inodilation. Front Med. 2020;7:566388. Håheim B, Kondratiev T, Dietrichs ES, Tveita T. Comparison between two pharmacologic strategies to alleviate rewarming shock: vasodilation vs. inodilation. Front Med. 2020;7:566388.
8.
go back to reference Dietrichs ES, Kondratiev T, Tveita T. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model. Cryobiology. 2014;69(3):361–6.PubMed Dietrichs ES, Kondratiev T, Tveita T. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model. Cryobiology. 2014;69(3):361–6.PubMed
9.
go back to reference Selli AL, Kuzmiszyn AK, Smaglyukova N, Kondratiev TV, Fuskevåg O-M, Lyså RA, et al. Treatment of cardiovascular dysfunction with PDE5-inhibitors—temperature dependent effects on transport and metabolism of cAMP and cGMP. Front Physiol. 2021;12:695779.PubMedPubMedCentral Selli AL, Kuzmiszyn AK, Smaglyukova N, Kondratiev TV, Fuskevåg O-M, Lyså RA, et al. Treatment of cardiovascular dysfunction with PDE5-inhibitors—temperature dependent effects on transport and metabolism of cAMP and cGMP. Front Physiol. 2021;12:695779.PubMedPubMedCentral
10.
go back to reference Kuzmiszyn AK, Selli AL, Smaglyukova N, Kondratiev T, Fuskevåg O-M, Lyså RA, et al. Treatment of cardiovascular dysfunction with PDE3-inhibitors in moderate and severe hypothermia—effects on cellular elimination of cyclic adenosine monophosphate and cyclic guanosine monophosphate. Front Physiol. 2022;13:25. Kuzmiszyn AK, Selli AL, Smaglyukova N, Kondratiev T, Fuskevåg O-M, Lyså RA, et al. Treatment of cardiovascular dysfunction with PDE3-inhibitors in moderate and severe hypothermia—effects on cellular elimination of cyclic adenosine monophosphate and cyclic guanosine monophosphate. Front Physiol. 2022;13:25.
11.
go back to reference Tisdale JE, Chung MK, Campbell KB, Hammadah M, Joglar JA, Leclerc J, et al. Drug-induced arrhythmias: a scientific statement from the American Heart Association. Circulation. 2020;142(15):e214–33.PubMed Tisdale JE, Chung MK, Campbell KB, Hammadah M, Joglar JA, Leclerc J, et al. Drug-induced arrhythmias: a scientific statement from the American Heart Association. Circulation. 2020;142(15):e214–33.PubMed
12.
go back to reference Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L, et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep. 2018;24(13):3582–92.PubMedPubMedCentral Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L, et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep. 2018;24(13):3582–92.PubMedPubMedCentral
13.
go back to reference Mundim KC, Baraldi S, Machado HG, Vieira FMC. Temperature coefficient (Q10) and its applications in biological systems: beyond the Arrhenius theory. Ecol Model. 2020;431: 109127. Mundim KC, Baraldi S, Machado HG, Vieira FMC. Temperature coefficient (Q10) and its applications in biological systems: beyond the Arrhenius theory. Ecol Model. 2020;431: 109127.
14.
go back to reference Lu HR, Hortigon-Vinagre MP, Zamora V, Kopljar I, De Bondt A, Gallacher DJ, et al. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias. J Pharmacol Toxicol Methods. 2017;87:53–67.PubMed Lu HR, Hortigon-Vinagre MP, Zamora V, Kopljar I, De Bondt A, Gallacher DJ, et al. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias. J Pharmacol Toxicol Methods. 2017;87:53–67.PubMed
15.
go back to reference Dietrichs ES, Tveita T, Myles R, Smith G. A novel ECG-biomarker for cardiac arrest during hypothermia. Scand J Trauma Resusc Emerg Med. 2020;28(1):27.PubMedPubMedCentral Dietrichs ES, Tveita T, Myles R, Smith G. A novel ECG-biomarker for cardiac arrest during hypothermia. Scand J Trauma Resusc Emerg Med. 2020;28(1):27.PubMedPubMedCentral
16.
go back to reference Thomsen JH, Hassager C, Erlinge D, Nielsen N, Lindholm MG, Bro-Jeppesen J, et al. Repolarization and ventricular arrhythmia during targeted temperature management post cardiac arrest. Resuscitation. 2021;166:74–82.PubMed Thomsen JH, Hassager C, Erlinge D, Nielsen N, Lindholm MG, Bro-Jeppesen J, et al. Repolarization and ventricular arrhythmia during targeted temperature management post cardiac arrest. Resuscitation. 2021;166:74–82.PubMed
17.
go back to reference Yoon N, Hong S, Glass A, Kim SS, Kim MC, Cho JY, et al. Tpeak-Tend interval during therapeutic hypothermia can predict upcoming ventricular fibrillation in subjects with aborted arrhythmic sudden cardiac death: 3-years follow-up results. EP Europace. 2017;19(suppl_4):iv17–24. Yoon N, Hong S, Glass A, Kim SS, Kim MC, Cho JY, et al. Tpeak-Tend interval during therapeutic hypothermia can predict upcoming ventricular fibrillation in subjects with aborted arrhythmic sudden cardiac death: 3-years follow-up results. EP Europace. 2017;19(suppl_4):iv17–24.
18.
go back to reference Rosol Z, Miranda DF, Sandoval Y, Bart BA, Smith SW, Goldsmith SR. The effect of targeted temperature management on QT and corrected QT intervals in patients with cardiac arrest. J Crit Care. 2017;39:182–4.PubMed Rosol Z, Miranda DF, Sandoval Y, Bart BA, Smith SW, Goldsmith SR. The effect of targeted temperature management on QT and corrected QT intervals in patients with cardiac arrest. J Crit Care. 2017;39:182–4.PubMed
19.
go back to reference Salinas P, Lopez-de-Sa E, Pena-Conde L, Viana-Tejedor A, Rey-Blas JR, Armada E, et al. Electrocardiographic changes during induced therapeutic hypothermia in comatose survivors after cardiac arrest. World J Cardiol. 2015;7(7):423–30.PubMedPubMedCentral Salinas P, Lopez-de-Sa E, Pena-Conde L, Viana-Tejedor A, Rey-Blas JR, Armada E, et al. Electrocardiographic changes during induced therapeutic hypothermia in comatose survivors after cardiac arrest. World J Cardiol. 2015;7(7):423–30.PubMedPubMedCentral
20.
go back to reference Weitz D, Greet B, Bernstein SA, Holmes DS, Bernstein N, Aizer A, et al. The benign nature of mild induced therapeutic hypothermia–induced long QTc. Int J Cardiol. 2013;168(2):1583–5.PubMed Weitz D, Greet B, Bernstein SA, Holmes DS, Bernstein N, Aizer A, et al. The benign nature of mild induced therapeutic hypothermia–induced long QTc. Int J Cardiol. 2013;168(2):1583–5.PubMed
21.
go back to reference Kim SM, Hwang GS, Park JS, Shin JS, Kim GW, Yang HM, et al. The pattern of Tpeak-Tend and QT interval, and J wave during therapeutic hypothermia. J Electrocardiol. 2014;47(1):84–92.PubMed Kim SM, Hwang GS, Park JS, Shin JS, Kim GW, Yang HM, et al. The pattern of Tpeak-Tend and QT interval, and J wave during therapeutic hypothermia. J Electrocardiol. 2014;47(1):84–92.PubMed
22.
go back to reference Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation. 2001;103(15):2004–13.PubMed Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation. 2001;103(15):2004–13.PubMed
23.
go back to reference Cohagan B, Brandis D. Torsade de Pointes. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. 2022. Cohagan B, Brandis D. Torsade de Pointes. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. 2022.
24.
go back to reference Manabe M, Fujino M, Kusuki H, Sadanaga T, Hata T, Bouda H, et al. Effect of hypothermia on myocardial depolarization and repolarization in neonates with hypoxic-ischemic encephalopathy due to asphyxia. Pediatr Cardiol. 2022;43(8):1792–8.PubMed Manabe M, Fujino M, Kusuki H, Sadanaga T, Hata T, Bouda H, et al. Effect of hypothermia on myocardial depolarization and repolarization in neonates with hypoxic-ischemic encephalopathy due to asphyxia. Pediatr Cardiol. 2022;43(8):1792–8.PubMed
25.
go back to reference Bassin L, Yong AC, Kilpatrick D, Hunyor SN. Arrhythmogenicity of hypothermia—a large animal model of hypothermia. Heart Lung Circ. 2014;23(1):82–7.PubMed Bassin L, Yong AC, Kilpatrick D, Hunyor SN. Arrhythmogenicity of hypothermia—a large animal model of hypothermia. Heart Lung Circ. 2014;23(1):82–7.PubMed
26.
go back to reference Chien YS, Weng CJ, Wu SJ, Li CH, Lin JC, Huang JL, et al. Levosimendan attenuates electrical alternans and prevents ventricular arrhythmia during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm. 2023;20:744–53.PubMed Chien YS, Weng CJ, Wu SJ, Li CH, Lin JC, Huang JL, et al. Levosimendan attenuates electrical alternans and prevents ventricular arrhythmia during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm. 2023;20:744–53.PubMed
27.
go back to reference Tveita T, Sieck GC. Physiological impact of hypothermia: the good, the bad, and the ugly. Physiology. 2022;37(2):69–87.PubMed Tveita T, Sieck GC. Physiological impact of hypothermia: the good, the bad, and the ugly. Physiology. 2022;37(2):69–87.PubMed
28.
go back to reference Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, et al. Physiological changes in subjects exposed to accidental hypothermia: an update. Front Med. 2022;9:824935. Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, et al. Physiological changes in subjects exposed to accidental hypothermia: an update. Front Med. 2022;9:824935.
29.
go back to reference Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016;5(6): e003264.PubMedPubMedCentral Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016;5(6): e003264.PubMedPubMedCentral
30.
go back to reference Manninger M, Alogna A, Zweiker D, Zirngast B, Reiter S, Herbst V, et al. Mild hypothermia (33°C) increases the inducibility of atrial fibrillation: an in vivo large animal model study. Pacing Clin Electrophysiol. 2018;41(7):720–6.PubMed Manninger M, Alogna A, Zweiker D, Zirngast B, Reiter S, Herbst V, et al. Mild hypothermia (33°C) increases the inducibility of atrial fibrillation: an in vivo large animal model study. Pacing Clin Electrophysiol. 2018;41(7):720–6.PubMed
31.
go back to reference Rieg AD, Schroth SC, Grottke O, Hein M, Ackermann D, Rossaint R, et al. Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone. Eur J Anaesthesiol. 2009;26(11):946–53.PubMed Rieg AD, Schroth SC, Grottke O, Hein M, Ackermann D, Rossaint R, et al. Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone. Eur J Anaesthesiol. 2009;26(11):946–53.PubMed
32.
go back to reference Rungatscher A, Hallström S, Giacomazzi A, Linardi D, Milani E, Tessari M, et al. Role of calcium desensitization in the treatment of myocardial dysfunction after deep hypothermic circulatory arrest. Crit Care. 2013;17(5):R245.PubMedPubMedCentral Rungatscher A, Hallström S, Giacomazzi A, Linardi D, Milani E, Tessari M, et al. Role of calcium desensitization in the treatment of myocardial dysfunction after deep hypothermic circulatory arrest. Crit Care. 2013;17(5):R245.PubMedPubMedCentral
33.
go back to reference Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, et al. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. J Thorac Cardiovasc Surg. 2021;161(4):1287–331.PubMed Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, et al. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. J Thorac Cardiovasc Surg. 2021;161(4):1287–331.PubMed
34.
go back to reference Distelmaier K, Roth C, Schrutka L, Binder C, Steinlechner B, Heinz G, et al. Beneficial effects of levosimendan on survival in patients undergoing extracorporeal membrane oxygenation after cardiovascular surgery. Br J Anaesth. 2016;117(1):52–8.PubMedPubMedCentral Distelmaier K, Roth C, Schrutka L, Binder C, Steinlechner B, Heinz G, et al. Beneficial effects of levosimendan on survival in patients undergoing extracorporeal membrane oxygenation after cardiovascular surgery. Br J Anaesth. 2016;117(1):52–8.PubMedPubMedCentral
35.
go back to reference Dietrichs ES, Håheim B, Kondratiev T, Sieck GC, Tveita T. Cardiovascular effects of levosimendan during rewarming from hypothermia in rat. Cryobiology. 2014;69(3):402–10.PubMed Dietrichs ES, Håheim B, Kondratiev T, Sieck GC, Tveita T. Cardiovascular effects of levosimendan during rewarming from hypothermia in rat. Cryobiology. 2014;69(3):402–10.PubMed
36.
go back to reference Håheim B, Kondratiev T, Dietrichs ES, Tveita T. Comparison between two pharmacologic strategies to alleviate rewarming shock: vasodilation vs. inodilation. Front Med. 2020;7(746):56. Håheim B, Kondratiev T, Dietrichs ES, Tveita T. Comparison between two pharmacologic strategies to alleviate rewarming shock: vasodilation vs. inodilation. Front Med. 2020;7(746):56.
37.
go back to reference Rungatscher A, Linardi D, Tessari M, Menon T, Luciani GB, Mazzucco A, et al. Levosimendan is superior to epinephrine in improving myocardial function after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg. 2012;143(1):209–14.PubMed Rungatscher A, Linardi D, Tessari M, Menon T, Luciani GB, Mazzucco A, et al. Levosimendan is superior to epinephrine in improving myocardial function after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg. 2012;143(1):209–14.PubMed
38.
go back to reference Dietrichs ES, Schanche T, Kondratiev T, Gaustad SE, Sager G, Tveita T. Negative inotropic effects of epinephrine in the presence of increased β-adrenoceptor sensitivity during hypothermia in a rat model. Cryobiology. 2015;70(1):9–16.PubMed Dietrichs ES, Schanche T, Kondratiev T, Gaustad SE, Sager G, Tveita T. Negative inotropic effects of epinephrine in the presence of increased β-adrenoceptor sensitivity during hypothermia in a rat model. Cryobiology. 2015;70(1):9–16.PubMed
39.
go back to reference Han YS, Tveita T, Kondratiev TV, Prakash YS, Sieck GC. Changes in cardiovascular beta-adrenoceptor responses during hypothermia. Cryobiology. 2008;57(3):246–50.PubMed Han YS, Tveita T, Kondratiev TV, Prakash YS, Sieck GC. Changes in cardiovascular beta-adrenoceptor responses during hypothermia. Cryobiology. 2008;57(3):246–50.PubMed
40.
go back to reference Takahiro T, Kou S, Toshinobu Y, Yuichi H. Accidental hypothermia-induced electrical storm successfully treated with isoproterenol. Heart Rhythm. 2015;12(3):644–7.PubMed Takahiro T, Kou S, Toshinobu Y, Yuichi H. Accidental hypothermia-induced electrical storm successfully treated with isoproterenol. Heart Rhythm. 2015;12(3):644–7.PubMed
41.
go back to reference Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121(2):181–95.PubMedPubMedCentral Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121(2):181–95.PubMedPubMedCentral
42.
go back to reference Dietrichs ES, Tveita T, Smith G. Hypothermia and cardiac electrophysiology: a systematic review of clinical and experimental data. Cardiovasc Res. 2018;115(3):501–9. Dietrichs ES, Tveita T, Smith G. Hypothermia and cardiac electrophysiology: a systematic review of clinical and experimental data. Cardiovasc Res. 2018;115(3):501–9.
43.
go back to reference Pi Y, Kemnitz KR, Zhang D, Kranias EG, Walker JW. Phosphorylation of troponin I controls cardiac twitch dynamics. Circ Res. 2002;90(6):649–56.PubMed Pi Y, Kemnitz KR, Zhang D, Kranias EG, Walker JW. Phosphorylation of troponin I controls cardiac twitch dynamics. Circ Res. 2002;90(6):649–56.PubMed
44.
go back to reference van den Broek MPH, Groenendaal F, Egberts ACG, Rademaker CMA. Effects of hypothermia on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(5):277–94.PubMed van den Broek MPH, Groenendaal F, Egberts ACG, Rademaker CMA. Effects of hypothermia on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(5):277–94.PubMed
45.
go back to reference Antila S, Sundberg S, Lehtonen LA. Clinical pharmacology of levosimendan. Clin Pharmacokinet. 2007;46(7):535–52.PubMed Antila S, Sundberg S, Lehtonen LA. Clinical pharmacology of levosimendan. Clin Pharmacokinet. 2007;46(7):535–52.PubMed
46.
go back to reference Schüttler D, Tomsits P, Bleyer C, Vlcek J, Pauly V, Hesse N, et al. A practical guide to setting up pig models for cardiovascular catheterization, electrophysiological assessment and heart disease research. Lab Anim. 2022;51(2):46–67. Schüttler D, Tomsits P, Bleyer C, Vlcek J, Pauly V, Hesse N, et al. A practical guide to setting up pig models for cardiovascular catheterization, electrophysiological assessment and heart disease research. Lab Anim. 2022;51(2):46–67.
47.
go back to reference Gilbert M, Busund R, Skagseth A, Nilsen PA, Solbø JP. Resuscitation from accidental hypothermia of 13.7 degrees C with circulatory arrest. Lancet. 2000;355(9201):375–6.PubMed Gilbert M, Busund R, Skagseth A, Nilsen PA, Solbø JP. Resuscitation from accidental hypothermia of 13.7 degrees C with circulatory arrest. Lancet. 2000;355(9201):375–6.PubMed
48.
go back to reference Mroczek T, Gladki M, Skalski J. Successful resuscitation from accidental hypothermia of 11.8°C: where is the lower bound for human beings? Eur J Cardiothorac Surg. 2020;58(5):1091–2.PubMedPubMedCentral Mroczek T, Gladki M, Skalski J. Successful resuscitation from accidental hypothermia of 11.8°C: where is the lower bound for human beings? Eur J Cardiothorac Surg. 2020;58(5):1091–2.PubMedPubMedCentral
Metadata
Title
Proarrhythmic changes in human cardiomyocytes during hypothermia by milrinone and isoprenaline, but not levosimendan: an experimental in vitro study
Authors
Anders Lund Selli
Mohammadreza Ghasemi
Taylor Watters
Francis Burton
Godfrey Smith
Erik Sveberg Dietrichs
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Milrinone
DOI
https://doi.org/10.1186/s13049-023-01134-5

Other articles of this Issue 1/2023

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2023 Go to the issue