Skip to main content
Top
Published in: Journal of Ovarian Research 1/2024

Open Access 01-12-2024 | Ovarian Cancer | Research

A novel defined programmed cell death related gene signature for predicting the prognosis of serous ovarian cancer

Authors: Feng Zhan, Yina Guo, Lidan He

Published in: Journal of Ovarian Research | Issue 1/2024

Login to get access

Abstract

Purpose

This study aims to explore the contribution of differentially expressed programmed cell death genes (DEPCDGs) to the heterogeneity of serous ovarian cancer (SOC) through single-cell RNA sequencing (scRNA-seq) and assess their potential as predictors for clinical prognosis.

Methods

SOC scRNA-seq data were extracted from the Gene Expression Omnibus database, and the principal component analysis was used for cell clustering. Bulk RNA-seq data were employed to analyze SOC-associated immune cell subsets key genes. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were utilized to calculate immune cell scores. Prognostic models and nomograms were developed through univariate and multivariate Cox analyses.

Results

Our analysis revealed that 48 DEPCDGs are significantly correlated with apoptotic signaling and oxidative stress pathways and identified seven key DEPCDGs (CASP3, GADD45B, GNA15, GZMB, IL1B, ISG20, and RHOB) through survival analysis. Furthermore, eight distinct cell subtypes were characterized using scRNA-seq. It was found that G protein subunit alpha 15 (GNA15) exhibited low expression across these subtypes and a strong association with immune cells. Based on the DEGs identified by the GNA15 high- and low-expression groups, a prognostic model comprising eight genes with significant prognostic value was constructed, effectively predicting patient overall survival. Additionally, a nomogram incorporating the RS signature, age, grade, and stage was developed and validated using two large SOC datasets.

Conclusion

GNA15 emerged as an independent and excellent prognostic marker for SOC patients. This study provides valuable insights into the prognostic potential of DEPCDGs in SOC, presenting new avenues for personalized treatment strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef
2.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef
4.
go back to reference Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.PubMedPubMedCentralCrossRef Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.PubMedPubMedCentralCrossRef
5.
go back to reference Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:1–14.CrossRef Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:1–14.CrossRef
6.
go back to reference Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell death discovery. 2021;7(1):71.PubMedPubMedCentralCrossRef Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell death discovery. 2021;7(1):71.PubMedPubMedCentralCrossRef
7.
go back to reference Vos JR, Fakkert IE, de Hullu JA, van Altena AM, Sie AS, Ouchene H, et al. Universal tumor DNA BRCA1/2 testing of ovarian cancer: prescreening PARPi treatment and genetic predisposition. J Natl Cancer Inst. 2020;112(2):161–9.PubMedCrossRef Vos JR, Fakkert IE, de Hullu JA, van Altena AM, Sie AS, Ouchene H, et al. Universal tumor DNA BRCA1/2 testing of ovarian cancer: prescreening PARPi treatment and genetic predisposition. J Natl Cancer Inst. 2020;112(2):161–9.PubMedCrossRef
8.
go back to reference Ihlow J, Monjé N, Hoffmann I, Bischoff P, Sinn BV, Schmitt WD, et al. Low expression of RGS2 promotes poor prognosis in high-grade serous ovarian cancer. Cancers (Basel). 2022;14(19):4620.PubMedCrossRef Ihlow J, Monjé N, Hoffmann I, Bischoff P, Sinn BV, Schmitt WD, et al. Low expression of RGS2 promotes poor prognosis in high-grade serous ovarian cancer. Cancers (Basel). 2022;14(19):4620.PubMedCrossRef
9.
go back to reference Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34.PubMedCrossRef Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34.PubMedCrossRef
10.
go back to reference Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, et al. A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 2020;26(8):1271–9.PubMedPubMedCentralCrossRef Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, et al. A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 2020;26(8):1271–9.PubMedPubMedCentralCrossRef
11.
go back to reference Zhao H, Gao Y, Miao J, Chen S, Li J, Li Z, et al. Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer. Cell Death Dis. 2021;12(11):1–11.CrossRef Zhao H, Gao Y, Miao J, Chen S, Li J, Li Z, et al. Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer. Cell Death Dis. 2021;12(11):1–11.CrossRef
13.
go back to reference Guruprasad P, Lee YG, Kim KH, Ruella M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med. 2021;218(1): e20201574.PubMedCrossRef Guruprasad P, Lee YG, Kim KH, Ruella M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med. 2021;218(1): e20201574.PubMedCrossRef
14.
go back to reference Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med. 2018;59:114–22.PubMedCrossRef Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med. 2018;59:114–22.PubMedCrossRef
15.
go back to reference Liu C, Zhang Y, Li X, Wang D. Ovarian cancer-specific dysregulated genes with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation. Ann N Y Acad Sci. 2022;1512(1):154–73.PubMedCrossRef Liu C, Zhang Y, Li X, Wang D. Ovarian cancer-specific dysregulated genes with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation. Ann N Y Acad Sci. 2022;1512(1):154–73.PubMedCrossRef
16.
go back to reference Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med. 2023;21(1):1–20.CrossRef Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med. 2023;21(1):1–20.CrossRef
17.
go back to reference Sumitani N, Ishida K, Sawada K, Kimura T, Kaneda Y, Nimura K. Identification of malignant cell populations associated with poor prognosis in high-grade serous ovarian cancer using single-cell RNA sequencing. Cancers (Basel). 2022;14(15):3580.PubMedCrossRef Sumitani N, Ishida K, Sawada K, Kimura T, Kaneda Y, Nimura K. Identification of malignant cell populations associated with poor prognosis in high-grade serous ovarian cancer using single-cell RNA sequencing. Cancers (Basel). 2022;14(15):3580.PubMedCrossRef
18.
go back to reference Yu S, Yang R, Xu T, Li X, Wu S, Zhang J. Cancer-associated fibroblasts-derived FMO2 as a biomarker of macrophage infiltration and prognosis in epithelial ovarian cancer. Gynecol Oncol. 2022;167(2):342–53.PubMedCrossRef Yu S, Yang R, Xu T, Li X, Wu S, Zhang J. Cancer-associated fibroblasts-derived FMO2 as a biomarker of macrophage infiltration and prognosis in epithelial ovarian cancer. Gynecol Oncol. 2022;167(2):342–53.PubMedCrossRef
20.
go back to reference Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef
21.
go back to reference Lisowska KM, Olbryt M, Student S, Kujawa KA, Cortez AJ, Simek K, et al. Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. J Cancer Res Clin Oncol. 2016;142(6):1239–52.PubMedPubMedCentralCrossRef Lisowska KM, Olbryt M, Student S, Kujawa KA, Cortez AJ, Simek K, et al. Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. J Cancer Res Clin Oncol. 2016;142(6):1239–52.PubMedPubMedCentralCrossRef
22.
go back to reference Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):1.30. 1-1.30. 33.PubMedCrossRef Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):1.30. 1-1.30. 33.PubMedCrossRef
23.
go back to reference Xu J, Fang Y, Chen K, Li S, Tang S, Ren Y, et al. Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer. Clin Cancer Res. 2022;28(16):3590–602.PubMedPubMedCentralCrossRef Xu J, Fang Y, Chen K, Li S, Tang S, Ren Y, et al. Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer. Clin Cancer Res. 2022;28(16):3590–602.PubMedPubMedCentralCrossRef
24.
go back to reference Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet. 2022;13: 934154.PubMedPubMedCentralCrossRef Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet. 2022;13: 934154.PubMedPubMedCentralCrossRef
25.
go back to reference Zhang G, Fan W, Wang H, Wen J, Tan J, Xue M, et al. Non-apoptotic programmed cell death-related gene signature correlates with stemness and immune status and predicts the responsiveness of transarterial chemoembolization in hepatocellular carcinoma. Frontiers in Cell and Developmental Biology. 2022;10: 844013.PubMedPubMedCentralCrossRef Zhang G, Fan W, Wang H, Wen J, Tan J, Xue M, et al. Non-apoptotic programmed cell death-related gene signature correlates with stemness and immune status and predicts the responsiveness of transarterial chemoembolization in hepatocellular carcinoma. Frontiers in Cell and Developmental Biology. 2022;10: 844013.PubMedPubMedCentralCrossRef
27.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedPubMedCentralCrossRef
28.
go back to reference Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–26.PubMedCrossRef Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–26.PubMedCrossRef
30.
31.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.CrossRef Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.CrossRef
33.
go back to reference Hao Y, Hao S, Andersen-Nissen E, Mauck WM III, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e29.PubMedPubMedCentralCrossRef Hao Y, Hao S, Andersen-Nissen E, Mauck WM III, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e29.PubMedPubMedCentralCrossRef
34.
go back to reference Etherington GJ, Soranzo N, Mohammed S, Haerty W, Davey RP, Palma FD. A Galaxy-based training resource for single-cell RNA-sequencing quality control and analyses. GigaScience. 2019;8(12):giz144.PubMedPubMedCentralCrossRef Etherington GJ, Soranzo N, Mohammed S, Haerty W, Davey RP, Palma FD. A Galaxy-based training resource for single-cell RNA-sequencing quality control and analyses. GigaScience. 2019;8(12):giz144.PubMedPubMedCentralCrossRef
35.
go back to reference Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IW, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44.CrossRef Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IW, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44.CrossRef
36.
go back to reference Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteomics Bioinformatics. 2021;19(2):267–81.PubMedCrossRef Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteomics Bioinformatics. 2021;19(2):267–81.PubMedCrossRef
37.
go back to reference Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.PubMedPubMedCentralCrossRef
38.
go back to reference Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, et al. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front Oncol. 2020;10: 607622.PubMedPubMedCentralCrossRef Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, et al. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front Oncol. 2020;10: 607622.PubMedPubMedCentralCrossRef
39.
go back to reference Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021;2(3):100141.PubMedPubMedCentralCrossRef Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021;2(3):100141.PubMedPubMedCentralCrossRef
40.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
41.
go back to reference Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef
42.
go back to reference Dai S, Xu S, Ye Y, Ding K. Identification of an immune-related gene signature to improve prognosis prediction in colorectal cancer patients. Front Genet. 2020;11: 607009.PubMedPubMedCentralCrossRef Dai S, Xu S, Ye Y, Ding K. Identification of an immune-related gene signature to improve prognosis prediction in colorectal cancer patients. Front Genet. 2020;11: 607009.PubMedPubMedCentralCrossRef
43.
go back to reference Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9.PubMedPubMedCentralCrossRef Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9.PubMedPubMedCentralCrossRef
44.
go back to reference Davis-Marcisak EF, Sherman TD, Orugunta P, Stein-O’Brien GL, Puram SV, Roussos Torres ET, et al. Differential variation analysis enables detection of tumor heterogeneity using single-cell RNA-sequencing data. Cancer Res. 2019;79(19):5102–12.PubMedPubMedCentralCrossRef Davis-Marcisak EF, Sherman TD, Orugunta P, Stein-O’Brien GL, Puram SV, Roussos Torres ET, et al. Differential variation analysis enables detection of tumor heterogeneity using single-cell RNA-sequencing data. Cancer Res. 2019;79(19):5102–12.PubMedPubMedCentralCrossRef
45.
go back to reference Martins FC, Couturier D-L, De Santiago I, Sauer CM, Vias M, Angelova M, et al. Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer. Nat Commun. 2022;13(1):1–14.CrossRef Martins FC, Couturier D-L, De Santiago I, Sauer CM, Vias M, Angelova M, et al. Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer. Nat Commun. 2022;13(1):1–14.CrossRef
46.
go back to reference Kim M, Chen C, Wang P, Mulvey JJ, Yang Y, Wun C, et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nature Biomedical Engineering. 2022;6(3):267–75.PubMedPubMedCentralCrossRef Kim M, Chen C, Wang P, Mulvey JJ, Yang Y, Wun C, et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nature Biomedical Engineering. 2022;6(3):267–75.PubMedPubMedCentralCrossRef
47.
go back to reference Pawar A, Chowdhury OR, Chauhan R, Talole S, Bhattacharjee A. Identification of key gene signatures for the overall survival of ovarian cancer. J Ovarian Res. 2022;15(1):1–13.CrossRef Pawar A, Chowdhury OR, Chauhan R, Talole S, Bhattacharjee A. Identification of key gene signatures for the overall survival of ovarian cancer. J Ovarian Res. 2022;15(1):1–13.CrossRef
48.
go back to reference Lian X, Liu B, Wang C, Wang S, Zhuang Y, Li X. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response. Front Endocrinol (Lausanne). 2023;14:1182776.PubMedPubMedCentralCrossRef Lian X, Liu B, Wang C, Wang S, Zhuang Y, Li X. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response. Front Endocrinol (Lausanne). 2023;14:1182776.PubMedPubMedCentralCrossRef
49.
go back to reference Zanini S, Giovinazzo F, Alaimo D, Lawrence B, Pfragner R, Bassi C, et al. GNA15 expression in small intestinal neuroendocrine neoplasia: functional and signalling pathway analyses. Cell Signal. 2015;27(5):899–907.PubMedCrossRef Zanini S, Giovinazzo F, Alaimo D, Lawrence B, Pfragner R, Bassi C, et al. GNA15 expression in small intestinal neuroendocrine neoplasia: functional and signalling pathway analyses. Cell Signal. 2015;27(5):899–907.PubMedCrossRef
50.
go back to reference Du T, Gao Q, Zhao Y, Gao J, Li J, Wang L, et al. Long Non-coding RNA LINC02474 Affects Metastasis and Apoptosis of Colorectal Cancer by Inhibiting the Expression of GZMB. Front Oncol. 2021;11:651796.PubMedPubMedCentralCrossRef Du T, Gao Q, Zhao Y, Gao J, Li J, Wang L, et al. Long Non-coding RNA LINC02474 Affects Metastasis and Apoptosis of Colorectal Cancer by Inhibiting the Expression of GZMB. Front Oncol. 2021;11:651796.PubMedPubMedCentralCrossRef
51.
go back to reference Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in cancer: friends or enemies? A special focus on hepatocellular carcinoma. Cancers (Basel). 2022;14(8):1902.PubMedCrossRef Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in cancer: friends or enemies? A special focus on hepatocellular carcinoma. Cancers (Basel). 2022;14(8):1902.PubMedCrossRef
52.
go back to reference Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci U S A. 1991;88(22):10049–53.PubMedPubMedCentralCrossRef Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci U S A. 1991;88(22):10049–53.PubMedPubMedCentralCrossRef
53.
go back to reference Giannone F, Malpeli G, Lisi V, Grasso S, Shukla P, Ramarli D, et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J Mol Endocrinol. 2010;44(5):259–69.PubMedCrossRef Giannone F, Malpeli G, Lisi V, Grasso S, Shukla P, Ramarli D, et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J Mol Endocrinol. 2010;44(5):259–69.PubMedCrossRef
54.
go back to reference Innamorati G, Wilkie TM, Malpeli G, Paiella S, Grasso S, Rusev B, et al. Gα15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep. 2021;11:14922.PubMedPubMedCentralCrossRef Innamorati G, Wilkie TM, Malpeli G, Paiella S, Grasso S, Rusev B, et al. Gα15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep. 2021;11:14922.PubMedPubMedCentralCrossRef
55.
go back to reference Zeng B, Chen Y, Chen H, Zhao Q, Sun Z, Liu D, et al. Exosomal miR-211–5p regulates glucose metabolism, pyroptosis, and immune microenvironment of melanoma through GNA15. Pharmacol Res. 2023;188:106660.PubMedCrossRef Zeng B, Chen Y, Chen H, Zhao Q, Sun Z, Liu D, et al. Exosomal miR-211–5p regulates glucose metabolism, pyroptosis, and immune microenvironment of melanoma through GNA15. Pharmacol Res. 2023;188:106660.PubMedCrossRef
56.
go back to reference Li M, Ding W, Wang Y, Ma Y, Du F. Development and validation of a gene signature for pancreatic cancer: based on inflammatory response–related genes. Environ Sci Pollut Res Int. 2022;30(7):1–13.CrossRef Li M, Ding W, Wang Y, Ma Y, Du F. Development and validation of a gene signature for pancreatic cancer: based on inflammatory response–related genes. Environ Sci Pollut Res Int. 2022;30(7):1–13.CrossRef
57.
go back to reference Li M, Liu Y, Liu Y, Yang L, Xu Y, Wang W, et al. Downregulation of GNA15 inhibits cell proliferation via P38 MAPK pathway and correlates with prognosis of adult acute myeloid leukemia with normal karyotype. Front Oncol. 2021;11:3490. Li M, Liu Y, Liu Y, Yang L, Xu Y, Wang W, et al. Downregulation of GNA15 inhibits cell proliferation via P38 MAPK pathway and correlates with prognosis of adult acute myeloid leukemia with normal karyotype. Front Oncol. 2021;11:3490.
Metadata
Title
A novel defined programmed cell death related gene signature for predicting the prognosis of serous ovarian cancer
Authors
Feng Zhan
Yina Guo
Lidan He
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2024
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-024-01419-y

Other articles of this Issue 1/2024

Journal of Ovarian Research 1/2024 Go to the issue