Skip to main content
Top
Published in: Journal of Ovarian Research 1/2023

Open Access 01-12-2023 | Polycystic Ovary Syndrome | Research

Alteration of the N6-methyladenosine methylation landscape in a mouse model of polycystic ovary syndrome

Authors: Lingxiao Zou, Waixing Li, Dabao Xu, Shujuan Zhu, Bin Jiang

Published in: Journal of Ovarian Research | Issue 1/2023

Login to get access

Abstract

Objective

To explore the N6-methyladenosine (m6A) methylation abnormality of mRNAs and its potential roles in the mouse model of polycystic ovary syndrome (PCOS).

Methods

The mouse model of PCOS were induced by injecting dehydroepiandrosterone (DHEA), and confirmed by observing the morphological structures of ovarian follicles. Subsequently, m6A-tagged mRNAs were identified via m6A epitranscriptomic microarray and its potential functional pathways were predicted in KEGG database. The expression and modification levels of key mRNAs in the most enriched pathway were evaluated and compared using western blot and methylated RNA immunoprecipitation-quantitative PCR (MeRIP-qPCR).

Results

Compared with the control group, 415 hypermethylated and downregulated mRNAs, 8 hypomethylated and upregulated mRNAs, and 14 hypermethylated and upregulated mRNAs were identified in the PCOS group (Fold change ≥ 1.5). Those mRNAs were mainly involved in insulin signaling pathway, type II diabetes mellitus, Fc epsilon RI signaling pathway, inositol phosphate metabolism, and GnRH secretion. In insulin signaling pathway, the expression levels of phosphorylated protein kinase B (p-AKT) were decreased, whereas that of upstream phosphorylated phosphatidylinositol 3-kinase (p-PI3K) were increased in PCOS group. Moreover, skeletal muscle and kidney-enriched inositol polyphosphate 5-phosphatease (SKIP), one of PIP3 phosphatases, was verified to be overexpressed, and Skip mRNAs were hypermethylated in PCOS group.

Conclusion

The altered m6A modification of mRNAs might play a critical role in PCOS process. The PI3K/AKT pathway is inhibited in the mouse model of PCOS. Whether it is caused by the m6A modification of Skip mRNAs is worthy of further exploration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kostroun KE, Goldrick K, Mondshine JN, Robinson RD, Mankus E, Reddy S, et al. Impact of updated international diagnostic criteria for the diagnosis of polycystic ovary syndrome. F S Rep. 2023;4:173–8.PubMed Kostroun KE, Goldrick K, Mondshine JN, Robinson RD, Mankus E, Reddy S, et al. Impact of updated international diagnostic criteria for the diagnosis of polycystic ovary syndrome. F S Rep. 2023;4:173–8.PubMed
2.
go back to reference Livadas S, Paparodis R, Anagnostis P, Gambineri A, Bjekic-Macut J, Petrovic T, et al. Assessment of type 2 diabetes risk in young women with polycystic ovary syndrome. Diagnostics (Basel). 2023;13:2067.PubMedCrossRef Livadas S, Paparodis R, Anagnostis P, Gambineri A, Bjekic-Macut J, Petrovic T, et al. Assessment of type 2 diabetes risk in young women with polycystic ovary syndrome. Diagnostics (Basel). 2023;13:2067.PubMedCrossRef
3.
go back to reference Lo A, Lo C, Oliver-Williams C. Cardiovascular disease risk in women with hyperandrogenism, oligomenorrhea/menstrual irregularity or polycystic ovaries (components of polycystic ovary syndrome): a systematic review and meta-analysis. Eur Heart J Open. 2023;3: d61.CrossRef Lo A, Lo C, Oliver-Williams C. Cardiovascular disease risk in women with hyperandrogenism, oligomenorrhea/menstrual irregularity or polycystic ovaries (components of polycystic ovary syndrome): a systematic review and meta-analysis. Eur Heart J Open. 2023;3: d61.CrossRef
4.
go back to reference Allen LA, Shrikrishnapalasuriyar N, Rees DA. Long-term health outcomes in young women with polycystic ovary syndrome: A narrative review. Clin Endocrinol (Oxf). 2022;97:187–98.PubMedCrossRef Allen LA, Shrikrishnapalasuriyar N, Rees DA. Long-term health outcomes in young women with polycystic ovary syndrome: A narrative review. Clin Endocrinol (Oxf). 2022;97:187–98.PubMedCrossRef
5.
go back to reference Zaib S, Rana N, Khan I, Waris A, Ahmad U. Analyzing the challenges, consequences, and possible treatments for polycystic ovary syndrome. Mini Rev Med Chem 2023. Zaib S, Rana N, Khan I, Waris A, Ahmad U. Analyzing the challenges, consequences, and possible treatments for polycystic ovary syndrome. Mini Rev Med Chem 2023.
6.
go back to reference Moran LJ, Tassone EC, Boyle J, Brennan L, Harrison CL, Hirschberg AL, et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes Rev. 2020;21: e13046.PubMedCrossRef Moran LJ, Tassone EC, Boyle J, Brennan L, Harrison CL, Hirschberg AL, et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes Rev. 2020;21: e13046.PubMedCrossRef
7.
go back to reference Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci. 2022;23:583.PubMedPubMedCentralCrossRef Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci. 2022;23:583.PubMedPubMedCentralCrossRef
8.
go back to reference Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019;236: 116940.PubMedCrossRef Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019;236: 116940.PubMedCrossRef
9.
go back to reference Wu Y, Yang L, Wu X, Wang L, Qi H, Feng Q, et al. Identification of the hub genes in polycystic ovary syndrome based on disease-associated molecule network. Faseb J. 2023;37: e23056.PubMedCrossRef Wu Y, Yang L, Wu X, Wang L, Qi H, Feng Q, et al. Identification of the hub genes in polycystic ovary syndrome based on disease-associated molecule network. Faseb J. 2023;37: e23056.PubMedCrossRef
10.
go back to reference Du T, Duan Y, Li K, Zhao X, Ni R, Li Y, et al. Statistical genomic approach identifies association between FSHR polymorphisms and polycystic ovary morphology in women with polycystic ovary syndrome. Biomed Res Int. 2015;2015: 483726.PubMedPubMedCentralCrossRef Du T, Duan Y, Li K, Zhao X, Ni R, Li Y, et al. Statistical genomic approach identifies association between FSHR polymorphisms and polycystic ovary morphology in women with polycystic ovary syndrome. Biomed Res Int. 2015;2015: 483726.PubMedPubMedCentralCrossRef
11.
go back to reference Cui L, Li G, Zhong W, Bian Y, Su S, Sheng Y, et al. Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. Hum Reprod. 2015;30:732–6.PubMedCrossRef Cui L, Li G, Zhong W, Bian Y, Su S, Sheng Y, et al. Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. Hum Reprod. 2015;30:732–6.PubMedCrossRef
12.
go back to reference Vazquez-Martinez ER, Gomez-Viais YI, Garcia-Gomez E, Reyes-Mayoral C, Reyes-Munoz E, Camacho-Arroyo I, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27-40.PubMedCrossRef Vazquez-Martinez ER, Gomez-Viais YI, Garcia-Gomez E, Reyes-Mayoral C, Reyes-Munoz E, Camacho-Arroyo I, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27-40.PubMedCrossRef
13.
go back to reference Miranda AG, Seneda MM, Faustino LR. DNA methylation associated with polycystic ovary syndrome: a systematic review. Arch Gynecol Obstet. 2023. Miranda AG, Seneda MM, Faustino LR. DNA methylation associated with polycystic ovary syndrome: a systematic review. Arch Gynecol Obstet. 2023.
14.
go back to reference Concha CF, Sir PT, Recabarren SE. Perez BF [Epigenetics of polycystic ovary syndrome]. Rev Med Chil. 2017;145:907–15. Concha CF, Sir PT, Recabarren SE. Perez BF [Epigenetics of polycystic ovary syndrome]. Rev Med Chil. 2017;145:907–15.
15.
go back to reference Szukiewicz D, Trojanowski S, Kociszewska A, Szewczyk G. Modulation of the inflammatory response in polycystic ovary syndrome (PCOS)-searching for epigenetic factors. Int J Mol Sci. 2022;23:14663.PubMedPubMedCentralCrossRef Szukiewicz D, Trojanowski S, Kociszewska A, Szewczyk G. Modulation of the inflammatory response in polycystic ovary syndrome (PCOS)-searching for epigenetic factors. Int J Mol Sci. 2022;23:14663.PubMedPubMedCentralCrossRef
16.
go back to reference Divoux A, Erdos E, Whytock K, Osborne TF, Smith SR. Transcriptional and DNA methylation signatures of subcutaneous adipose tissue and adipose-derived stem cells in PCOS women. Cells-Basel. 2022;11:848.CrossRef Divoux A, Erdos E, Whytock K, Osborne TF, Smith SR. Transcriptional and DNA methylation signatures of subcutaneous adipose tissue and adipose-derived stem cells in PCOS women. Cells-Basel. 2022;11:848.CrossRef
17.
go back to reference Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA methylation and screening of epigenetic markers in polycystic ovary syndrome. Front Cell Dev Biol. 2021;9: 664843.PubMedPubMedCentralCrossRef Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA methylation and screening of epigenetic markers in polycystic ovary syndrome. Front Cell Dev Biol. 2021;9: 664843.PubMedPubMedCentralCrossRef
18.
go back to reference Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, et al. Adipose tissue dysfunction in polycystic ovary syndrome. J Clin Endocrinol Metab. 2023;11:179. Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, et al. Adipose tissue dysfunction in polycystic ovary syndrome. J Clin Endocrinol Metab. 2023;11:179.
19.
go back to reference Ray RP, Padhi M, Jena S, Patnaik R, Rattan R, Nayak AK. Study of association of global deoxyribonucleic acid methylation in women with polycystic ovary syndrome. J Hum Reprod Sci. 2022;15:233–9.PubMedPubMedCentralCrossRef Ray RP, Padhi M, Jena S, Patnaik R, Rattan R, Nayak AK. Study of association of global deoxyribonucleic acid methylation in women with polycystic ovary syndrome. J Hum Reprod Sci. 2022;15:233–9.PubMedPubMedCentralCrossRef
21.
go back to reference Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.PubMedCrossRef Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.PubMedCrossRef
22.
23.
go back to reference Zhang S, Deng W, Liu Q, Wang P, Yang W, Ni W. Altered m(6) A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients. J Cell Mol Med. 2020;24:11874–82.PubMedPubMedCentralCrossRef Zhang S, Deng W, Liu Q, Wang P, Yang W, Ni W. Altered m(6) A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients. J Cell Mol Med. 2020;24:11874–82.PubMedPubMedCentralCrossRef
24.
go back to reference Sun X, Lu J, Li H, Huang B. The role of m(6)A on female reproduction and fertility: from gonad development to ovarian aging. Front Cell Dev Biol. 2022;10: 884295.PubMedPubMedCentralCrossRef Sun X, Lu J, Li H, Huang B. The role of m(6)A on female reproduction and fertility: from gonad development to ovarian aging. Front Cell Dev Biol. 2022;10: 884295.PubMedPubMedCentralCrossRef
25.
go back to reference Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, et al. The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 2017;67:1059–67.PubMedPubMedCentralCrossRef Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, et al. The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 2017;67:1059–67.PubMedPubMedCentralCrossRef
26.
go back to reference Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44: e91.PubMedPubMedCentralCrossRef Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44: e91.PubMedPubMedCentralCrossRef
27.
go back to reference Rawat K, Sandhu A, Gautam V, Saha PK, Saha L. Role of genomic DNA methylation in PCOS pathogenesis: a systematic review and meta-analysis involving case-controlled clinical studies. Mol Hum Reprod. 2022;28:gaac024.PubMedCrossRef Rawat K, Sandhu A, Gautam V, Saha PK, Saha L. Role of genomic DNA methylation in PCOS pathogenesis: a systematic review and meta-analysis involving case-controlled clinical studies. Mol Hum Reprod. 2022;28:gaac024.PubMedCrossRef
28.
go back to reference Smirnov VV, Beeraka NM, Butko DY, Nikolenko VN, Bondarev SA, Achkasov EE, et al. Updates on molecular targets and epigenetic-based therapies for PCOS. Reprod Sci. 2023;30:772–86.PubMedCrossRef Smirnov VV, Beeraka NM, Butko DY, Nikolenko VN, Bondarev SA, Achkasov EE, et al. Updates on molecular targets and epigenetic-based therapies for PCOS. Reprod Sci. 2023;30:772–86.PubMedCrossRef
29.
go back to reference Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19:1848–56.PubMedPubMedCentralCrossRef Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19:1848–56.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Purcell SH, Chi MM, Lanzendorf S, Moley KH. Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology. 2012;153:2444–54.PubMedPubMedCentralCrossRef Purcell SH, Chi MM, Lanzendorf S, Moley KH. Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology. 2012;153:2444–54.PubMedPubMedCentralCrossRef
33.
go back to reference Chen C, Jiang X, Ding C, Sun X, Wan L, Wang C. Downregulated lncRNA HOTAIR ameliorates polycystic ovaries syndrome via IGF-1 mediated PI3K/Akt pathway. Gynecol Endocrinol. 2023;39:2227280.PubMedCrossRef Chen C, Jiang X, Ding C, Sun X, Wan L, Wang C. Downregulated lncRNA HOTAIR ameliorates polycystic ovaries syndrome via IGF-1 mediated PI3K/Akt pathway. Gynecol Endocrinol. 2023;39:2227280.PubMedCrossRef
34.
go back to reference Li T, Mo H, Chen W, Li L, Xiao Y, Zhang J, et al. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci. 2017;24:646–55.PubMedCrossRef Li T, Mo H, Chen W, Li L, Xiao Y, Zhang J, et al. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci. 2017;24:646–55.PubMedCrossRef
35.
go back to reference Ijuin T, Hosooka T, Takenawa T. Phosphatidylinositol 3,4,5-trisphosphate phosphatase SKIP links endoplasmic reticulum stress in skeletal muscle to insulin resistance. Mol Cell Biol. 2016;36:108–18.PubMedCrossRef Ijuin T, Hosooka T, Takenawa T. Phosphatidylinositol 3,4,5-trisphosphate phosphatase SKIP links endoplasmic reticulum stress in skeletal muscle to insulin resistance. Mol Cell Biol. 2016;36:108–18.PubMedCrossRef
36.
go back to reference Ijuin T, Hatano N, Takenawa T. Glucose-regulated protein 78 (GRP78) binds directly to PIP3 phosphatase SKIP and determines its localization. Genes Cells. 2016;21:457–65.PubMedCrossRef Ijuin T, Hatano N, Takenawa T. Glucose-regulated protein 78 (GRP78) binds directly to PIP3 phosphatase SKIP and determines its localization. Genes Cells. 2016;21:457–65.PubMedCrossRef
37.
go back to reference Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.PubMedPubMedCentralCrossRef Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.PubMedPubMedCentralCrossRef
38.
go back to reference Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017;552:126–31.PubMedPubMedCentralCrossRef Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017;552:126–31.PubMedPubMedCentralCrossRef
39.
go back to reference Luo GZ, Macqueen A, Zheng G, Duan H, Dore LC, Lu Z, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun. 2014;5:5630.PubMedCrossRef Luo GZ, Macqueen A, Zheng G, Duan H, Dore LC, Lu Z, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun. 2014;5:5630.PubMedCrossRef
40.
go back to reference Popovic M, Sartorius G, Christ-Crain M. Chronic low-grade inflammation in polycystic ovary syndrome: is there a (patho)-physiological role for interleukin-1? Semin Immunopathol. 2019;41:447–59.PubMedCrossRef Popovic M, Sartorius G, Christ-Crain M. Chronic low-grade inflammation in polycystic ovary syndrome: is there a (patho)-physiological role for interleukin-1? Semin Immunopathol. 2019;41:447–59.PubMedCrossRef
41.
go back to reference Rostamtabar M, Esmaeilzadeh S, Tourani M, Rahmani A, Baee M, Shirafkan F, et al. Pathophysiological roles of chronic low-grade inflammation mediators in polycystic ovary syndrome. J Cell Physiol. 2021;236:824–38.PubMedCrossRef Rostamtabar M, Esmaeilzadeh S, Tourani M, Rahmani A, Baee M, Shirafkan F, et al. Pathophysiological roles of chronic low-grade inflammation mediators in polycystic ovary syndrome. J Cell Physiol. 2021;236:824–38.PubMedCrossRef
42.
go back to reference Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci. 2021;22:3789.PubMedPubMedCentralCrossRef Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci. 2021;22:3789.PubMedPubMedCentralCrossRef
43.
go back to reference Silva M, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome. EBioMedicine. 2019;44:582–96.PubMedPubMedCentralCrossRef Silva M, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome. EBioMedicine. 2019;44:582–96.PubMedPubMedCentralCrossRef
44.
go back to reference Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A. 2015;112:596–601.PubMedCrossRef Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A. 2015;112:596–601.PubMedCrossRef
45.
go back to reference Yan X, Yuan C, Zhao N, Cui Y, Liu J. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats. J Endocrinol. 2014;222:73–85.PubMedCrossRef Yan X, Yuan C, Zhao N, Cui Y, Liu J. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats. J Endocrinol. 2014;222:73–85.PubMedCrossRef
Metadata
Title
Alteration of the N6-methyladenosine methylation landscape in a mouse model of polycystic ovary syndrome
Authors
Lingxiao Zou
Waixing Li
Dabao Xu
Shujuan Zhu
Bin Jiang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2023
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-023-01246-7

Other articles of this Issue 1/2023

Journal of Ovarian Research 1/2023 Go to the issue