Skip to main content
Top
Published in: Journal of Ovarian Research 1/2015

Open Access 01-12-2015 | Research

Influence of mouse strain on ovarian tissue recovery after engraftment with angiogenic factor

Authors: Maïté Fransolet, Laurie Henry, Soraya Labied, Marie-Caroline Masereel, Silvia Blacher, Agnès Noël, Jean-Michel Foidart, Michelle Nisolle, Carine Munaut

Published in: Journal of Ovarian Research | Issue 1/2015

Login to get access

Abstract

Background

For women facing gonadotoxic treatment, cryopreservation of ovarian tissue with subsequent retransplantation during remission is a promising technique for fertility preservation. However, follicle loss within grafted ovarian tissue can be caused by ischemia and progressive revascularization. Several xenograft models using different immunodeficient rodent lines are suitable for studying ovarian tissue survival and follicular viability after frozen-thawed ovarian cortex transplantation. SCID mice, which are deficient for functional B and T cells, are the most commonly used mice for ovarian xenograft studies. However, due to incomplete immunosuppression, NOD-SCID mice displaying low NK cell function and an absence of circulating complement might be more appropriate. The present study aims to define the most appropriate immunodeficient mouse strain for ovarian tissue xenotransplantation by comparing ovarian graft recovery in SCID and NOD-SCID mice following engraftment in the presence of isoform 111 of vascular endothelial growth factor.

Methods

Sheep ovarian cortex fragments were embedded in a collagen matrix, with or without VEGF111, before being stitched onto the ovaries of SCID and NOD-SCID mice. Transplants were recovered after 3 days to study early revascularization or after 3 weeks to evaluate follicle preservation and tissue fibrosis through histological analyses.

Results

At day 3, vessels were largely reorganized in the ovarian grafts of both mouse strains. After 3 weeks, the cortical tissue was clearly identifiable in SCID mice but not in NOD-SCID mice. Upon VEGF111 treatment, vascularization was significantly improved 3 days after transplantation in SCID mice. This increase in vessel density was correlated with better follicular preservation in SCID mice 3 weeks after transplantation. Fibrosis was not decreased by VEGF treatment in either mouse strain.

Conclusions

Tissue architecture and follicular morphology were better preserved in ovarian tissues grafted in SCID mice in comparison with NOD-SCID mice. Moreover, tissue revascularization was improved in SCID mice by VEGF111 graft treatment. Thus, we consider SCID mice to be the best murine model for studying ovarian tissue xenografts.
Literature
1.
go back to reference Rodriguez-Wallberg KA, Oktay K. Recent advances in oocyte and ovarian tissue cryopreservation and transplantation. Best Pract Res Clin Obstet Gynaecol. 2012;26(3):391–405.CrossRefPubMedCentralPubMed Rodriguez-Wallberg KA, Oktay K. Recent advances in oocyte and ovarian tissue cryopreservation and transplantation. Best Pract Res Clin Obstet Gynaecol. 2012;26(3):391–405.CrossRefPubMedCentralPubMed
2.
go back to reference Meirow D, Ra’anani H, Biderman H. Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Methods Mol Biol. 2014;1154:455–73.CrossRefPubMed Meirow D, Ra’anani H, Biderman H. Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Methods Mol Biol. 2014;1154:455–73.CrossRefPubMed
3.
go back to reference Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-Term Ovarian Function in Sheep after Ovariectomy and Transplantation of Autografts Stored at −196 C. Endocrinology. 1999;140(1):462–71.PubMed Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-Term Ovarian Function in Sheep after Ovariectomy and Transplantation of Autografts Stored at −196 C. Endocrinology. 1999;140(1):462–71.PubMed
4.
go back to reference Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605–11.CrossRefPubMed Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605–11.CrossRefPubMed
5.
6.
go back to reference Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1):122–9.CrossRefPubMed Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1):122–9.CrossRefPubMed
7.
go back to reference Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4 Suppl):1550–8.CrossRefPubMed Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4 Suppl):1550–8.CrossRefPubMed
8.
go back to reference Gosden RG, Boulton MI, Grant K, Webb R. Follicular development from ovarian xenografts in SCID mice. J Reprod Fertil. 1994;101:619–23.CrossRefPubMed Gosden RG, Boulton MI, Grant K, Webb R. Follicular development from ovarian xenografts in SCID mice. J Reprod Fertil. 1994;101:619–23.CrossRefPubMed
9.
go back to reference Weissman A, Gotlieb L, Colgan T, Jurisicova A, Greenblatt EM, Casper RF. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod. 1999;60:1462–7.CrossRefPubMed Weissman A, Gotlieb L, Colgan T, Jurisicova A, Greenblatt EM, Casper RF. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod. 1999;60:1462–7.CrossRefPubMed
10.
go back to reference Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.CrossRefPubMed Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.CrossRefPubMed
11.
go back to reference Custer RP, Bosma GC, Bosma MJ. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol. 1985;120(3):464–77.PubMedCentralPubMed Custer RP, Bosma GC, Bosma MJ. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol. 1985;120(3):464–77.PubMedCentralPubMed
12.
go back to reference Bosma GC, Fried M, Custer RP, Carroll AM, Gibson DM, Bosma MJ. Evidence of functional lymphocytes in some (leaky) scid mice. J Exp Med. 1988;167:1016–33.CrossRefPubMed Bosma GC, Fried M, Custer RP, Carroll AM, Gibson DM, Bosma MJ. Evidence of functional lymphocytes in some (leaky) scid mice. J Exp Med. 1988;167:1016–33.CrossRefPubMed
13.
go back to reference Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–50.CrossRefPubMed Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–50.CrossRefPubMed
14.
go back to reference Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Immunology. 1992;88:3290–4. Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Immunology. 1992;88:3290–4.
15.
go back to reference Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.PubMed Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.PubMed
16.
go back to reference Labied S, Delforge Y, Munaut C, Blacher S, Colige A, Delcombel R, et al. Isoform 111 of Vascular Endothelial Growth Factor (VEGF111) Improves Angiogenesis of Ovarian Tissue Xenotransplantation. Transplantation. 2013;95(3):426–33.CrossRefPubMed Labied S, Delforge Y, Munaut C, Blacher S, Colige A, Delcombel R, et al. Isoform 111 of Vascular Endothelial Growth Factor (VEGF111) Improves Angiogenesis of Ovarian Tissue Xenotransplantation. Transplantation. 2013;95(3):426–33.CrossRefPubMed
17.
go back to reference Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13(1):12.CrossRefPubMedCentral Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13(1):12.CrossRefPubMedCentral
18.
go back to reference Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 degrees C. Hum Reprod. 1994;9(4):597–603.PubMed Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 degrees C. Hum Reprod. 1994;9(4):597–603.PubMed
19.
go back to reference Fusenig NE, Limat A, Stark HJ, Breitkreutz D. Modulation of the differentiated phenotype of keratinocytes of the hair follicle and from epidermis. J Dermatol Sci. 1994;7(Suppl):S142–51.CrossRefPubMed Fusenig NE, Limat A, Stark HJ, Breitkreutz D. Modulation of the differentiated phenotype of keratinocytes of the hair follicle and from epidermis. J Dermatol Sci. 1994;7(Suppl):S142–51.CrossRefPubMed
20.
go back to reference Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, et al. Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol. 2007;179(6):1261–73.CrossRefPubMedCentralPubMed Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, et al. Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol. 2007;179(6):1261–73.CrossRefPubMedCentralPubMed
21.
go back to reference Fransolet M, Labied S, Henry L, Masereel M-C, Rozet E, Kirschvink N, et al. Strategies for using the sheep ovarian cortex as a model in reproductive medicine. PloS one. 2014;9(3):e91073.CrossRefPubMedCentralPubMed Fransolet M, Labied S, Henry L, Masereel M-C, Rozet E, Kirschvink N, et al. Strategies for using the sheep ovarian cortex as a model in reproductive medicine. PloS one. 2014;9(3):e91073.CrossRefPubMedCentralPubMed
22.
go back to reference Balsat C, Blacher S, Signolle N, Beliard A, Munaut C, Goffin F, et al. Whole slide quantification of stromal lymphatic vessel distribution and peritumoral lymphatic vessel density in early invasive cervical cancer: a method description. ISRN obstet gynecol. 2011;2011:354861.PubMedCentralPubMed Balsat C, Blacher S, Signolle N, Beliard A, Munaut C, Goffin F, et al. Whole slide quantification of stromal lymphatic vessel distribution and peritumoral lymphatic vessel density in early invasive cervical cancer: a method description. ISRN obstet gynecol. 2011;2011:354861.PubMedCentralPubMed
23.
go back to reference Chantraine F, Blacher S, Berndt S, Palacios-Jaraquemada J, Sarioglu N, Nisolle M, et al. Abnormal vascular architecture at the placental-maternal interface in placenta increta. Am J Obstet Gynecol. 2012;207(3):188. e181-189.PubMed Chantraine F, Blacher S, Berndt S, Palacios-Jaraquemada J, Sarioglu N, Nisolle M, et al. Abnormal vascular architecture at the placental-maternal interface in placenta increta. Am J Obstet Gynecol. 2012;207(3):188. e181-189.PubMed
24.
go back to reference Imthurn B, Cox SL, Jenkin G, Trounson AO, Shaw JM. Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting. Mol Cell Endocrinol. 2000;163(1–2):141–6.CrossRefPubMed Imthurn B, Cox SL, Jenkin G, Trounson AO, Shaw JM. Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting. Mol Cell Endocrinol. 2000;163(1–2):141–6.CrossRefPubMed
25.
go back to reference Van Eyck AS, Jordan BF, Gallez B, Heilier JF, Van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 2009;92(1):374–81.CrossRefPubMed Van Eyck AS, Jordan BF, Gallez B, Heilier JF, Van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 2009;92(1):374–81.CrossRefPubMed
26.
go back to reference Wu D, Lei Y, Tong Y, Tang F, Qian Y, Zhou Y. Angiogenesis of the frozen-thawed human fetal ovarian tissue at the early stage after xenotransplantation and the positive effect of Salviae miltiorrhizae. Anat Rec(Hoboken). 2010;293(12):2154–62.CrossRef Wu D, Lei Y, Tong Y, Tang F, Qian Y, Zhou Y. Angiogenesis of the frozen-thawed human fetal ovarian tissue at the early stage after xenotransplantation and the positive effect of Salviae miltiorrhizae. Anat Rec(Hoboken). 2010;293(12):2154–62.CrossRef
27.
go back to reference Commin L, Buff S, Rosset E, Galet C, Allard A, Bruyere P, et al. Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse. Reprod Fertil Dev. 2012;24(3):461–71.CrossRefPubMed Commin L, Buff S, Rosset E, Galet C, Allard A, Bruyere P, et al. Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse. Reprod Fertil Dev. 2012;24(3):461–71.CrossRefPubMed
28.
go back to reference Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6(4):e19475.CrossRefPubMedCentralPubMed Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6(4):e19475.CrossRefPubMedCentralPubMed
29.
go back to reference Friedman O, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27(2):474–82.CrossRefPubMed Friedman O, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27(2):474–82.CrossRefPubMed
30.
go back to reference Dath C, Van Eyck AS, Dolmans MM, Romeu L, Delle Vigne L, Donnez J, et al. Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Hum Reprod. 2010;25(7):1734–43.CrossRefPubMed Dath C, Van Eyck AS, Dolmans MM, Romeu L, Delle Vigne L, Donnez J, et al. Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Hum Reprod. 2010;25(7):1734–43.CrossRefPubMed
31.
go back to reference Zhang B, Duan Z, Zhao Y. Mouse models with human immunity and their application in biomedical research. J Cell Mol Med. 2009;13(6):1043–58.CrossRefPubMed Zhang B, Duan Z, Zhao Y. Mouse models with human immunity and their application in biomedical research. J Cell Mol Med. 2009;13(6):1043–58.CrossRefPubMed
Metadata
Title
Influence of mouse strain on ovarian tissue recovery after engraftment with angiogenic factor
Authors
Maïté Fransolet
Laurie Henry
Soraya Labied
Marie-Caroline Masereel
Silvia Blacher
Agnès Noël
Jean-Michel Foidart
Michelle Nisolle
Carine Munaut
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2015
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0142-6

Other articles of this Issue 1/2015

Journal of Ovarian Research 1/2015 Go to the issue