Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2016

Open Access 01-12-2016 | Research

The reproducibility of acquiring three dimensional gait and plantar pressure data using established protocols in participants with and without type 2 diabetes and foot ulcers

Authors: Malindu Fernando, Robert G Crowther, Margaret Cunningham, Peter A Lazzarini, Kunwarjit S Sangla, Petra Buttner, Jonathan Golledge

Published in: Journal of Foot and Ankle Research | Issue 1/2016

Login to get access

Abstract

Background

Several prospective studies have suggested that gait and plantar pressure abnormalities secondary to diabetic peripheral neuropathy contributes to foot ulceration. There are many different methods by which gait and plantar pressures are assessed and currently there is no agreed standardised approach. This study aimed to describe the methods and reproducibility of three-dimensional gait and plantar pressure assessments in a small subset of participants using pre-existing protocols.

Methods

Fourteen participants were conveniently sampled prior to a planned longitudinal study; four patients with diabetes and plantar foot ulcers, five patients with diabetes but no foot ulcers and five healthy controls. The repeatability of measuring key biomechanical data was assessed including the identification of 16 key anatomical landmarks, the measurement of seven leg dimensions, the processing of 22 three-dimensional gait parameters and the analysis of four different plantar pressures measures at 20 foot regions.

Results

The mean inter-observer differences were within the pre-defined acceptable level (<7 mm) for 100 % (16 of 16) of key anatomical landmarks measured for gait analysis. The intra-observer assessment concordance correlation coefficients were > 0.9 for 100 % (7 of 7) of leg dimensions. The coefficients of variations (CVs) were within the pre-defined acceptable level (<10 %) for 100 % (22 of 22) of gait parameters. The CVs were within the pre-defined acceptable level (<30 %) for 95 % (19 of 20) of the contact area measures, 85 % (17 of 20) of mean plantar pressures, 70 % (14 of 20) of pressure time integrals and 55 % (11 of 20) of maximum sensor plantar pressure measures.

Conclusion

Overall, the findings of this study suggest that important gait and plantar pressure measurements can be reliably acquired. Nearly all measures contributing to three-dimensional gait parameter assessments were within predefined acceptable limits. Most plantar pressure measurements were also within predefined acceptable limits; however, reproducibility was not as good for assessment of the maximum sensor pressure. To our knowledge, this is the first study to investigate the reproducibility of several biomechanical methods in a heterogeneous cohort.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boulton AJM. The diabetic foot: From art to science. The 18th Camillo Golgi lecture. Diabetologia. 2004;47(8):1343–53.CrossRefPubMed Boulton AJM. The diabetic foot: From art to science. The 18th Camillo Golgi lecture. Diabetologia. 2004;47(8):1343–53.CrossRefPubMed
2.
go back to reference Cavanagh PR, Ulbrecht JS, Caputo GM. New developments in the biomechanics of the diabetic foot. Diabetes/Metabolism Research Reviews. 2000;16 Suppl 1:S6–S10.CrossRefPubMed Cavanagh PR, Ulbrecht JS, Caputo GM. New developments in the biomechanics of the diabetic foot. Diabetes/Metabolism Research Reviews. 2000;16 Suppl 1:S6–S10.CrossRefPubMed
3.
go back to reference Monteiro-Soares M, Boyko E, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes/metabolism research and reviews. 2012. Monteiro-Soares M, Boyko E, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes/metabolism research and reviews. 2012.
4.
go back to reference Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P et al. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clinical Biomechanics. 2013(0). In Press. Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P et al. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clinical Biomechanics. 2013(0). In Press.
5.
go back to reference Kanade RV, van Deursen RW, Harding K, Price P. Walking performance in people with diabetic neuropathy: benefits and threats. Diabetologia. 2006;49(8):1747–54.CrossRefPubMed Kanade RV, van Deursen RW, Harding K, Price P. Walking performance in people with diabetic neuropathy: benefits and threats. Diabetologia. 2006;49(8):1747–54.CrossRefPubMed
6.
go back to reference Fernando ME, Crowther RG, Pappas E, Lazzarini PA, Cunningham M, Sangla KS, et al. Plantar Pressure in Diabetic Peripheral Neuropathy Patients with Active Foot Ulceration, Previous Ulceration and No History of Ulceration: A Meta-Analysis of Observational Studies. PLoS ONE. 2014;9(6), e99050.CrossRefPubMedPubMedCentral Fernando ME, Crowther RG, Pappas E, Lazzarini PA, Cunningham M, Sangla KS, et al. Plantar Pressure in Diabetic Peripheral Neuropathy Patients with Active Foot Ulceration, Previous Ulceration and No History of Ulceration: A Meta-Analysis of Observational Studies. PLoS ONE. 2014;9(6), e99050.CrossRefPubMedPubMedCentral
7.
go back to reference McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait & posture. 2009;29(3):360–9.CrossRef McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait & posture. 2009;29(3):360–9.CrossRef
8.
go back to reference Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. Diabetes care. 2000;23(5):606–11.CrossRefPubMed Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. Diabetes care. 2000;23(5):606–11.CrossRefPubMed
9.
go back to reference Mueller M, Minor S, Sahrmann S, Schaaf J, Strube M. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with aged-matched controls… including commentary by McPoil T and Cavanaugh PR with author response. Physical therapy. 1994;74(4):299–313.CrossRefPubMed Mueller M, Minor S, Sahrmann S, Schaaf J, Strube M. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with aged-matched controls… including commentary by McPoil T and Cavanaugh PR with author response. Physical therapy. 1994;74(4):299–313.CrossRefPubMed
10.
go back to reference Bus SA, de Lange A. A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot. Clinical Biomechanics. 2005;20(9):892–9.CrossRefPubMed Bus SA, de Lange A. A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot. Clinical Biomechanics. 2005;20(9):892–9.CrossRefPubMed
11.
go back to reference Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait &amp; Posture. 2008;28(2):207–16.CrossRef Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait &amp; Posture. 2008;28(2):207–16.CrossRef
12.
go back to reference Giacomozzi C, Keijsers N, Pataky T, Rosenbaum D. International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali dell’Istituto superiore di sanita. 2012;48(3):259–71.CrossRefPubMed Giacomozzi C, Keijsers N, Pataky T, Rosenbaum D. International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali dell’Istituto superiore di sanita. 2012;48(3):259–71.CrossRefPubMed
13.
go back to reference Leigh RJ, Pohl MB, Ferber R. Does tester experience influence the reliability with which 3D gait kinematics are collected in healthy adults? Physical Therapy in Sport. 2013. Leigh RJ, Pohl MB, Ferber R. Does tester experience influence the reliability with which 3D gait kinematics are collected in healthy adults? Physical Therapy in Sport. 2013.
14.
go back to reference Fernando ME, Crowther RG, Cunningham M, Lazzarini PA, Sangla KS, Golledge J. Lower limb biomechanical characteristics of patients with neuropathic diabetic foot ulcers: The diabetes foot ulcer study protocol. BMC Endocr Disord. 2015;15:59.CrossRefPubMedPubMedCentral Fernando ME, Crowther RG, Cunningham M, Lazzarini PA, Sangla KS, Golledge J. Lower limb biomechanical characteristics of patients with neuropathic diabetic foot ulcers: The diabetes foot ulcer study protocol. BMC Endocr Disord. 2015;15:59.CrossRefPubMedPubMedCentral
16.
go back to reference Hafer JF, Lenhoff MW, Song J, Jordan JM, Hannan MT, Hillstrom HJ. Reliability of plantar pressure platforms. Gait & posture. 2013;38(3):544–8.CrossRef Hafer JF, Lenhoff MW, Song J, Jordan JM, Hannan MT, Hillstrom HJ. Reliability of plantar pressure platforms. Gait & posture. 2013;38(3):544–8.CrossRef
17.
go back to reference Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: Rationale and methodology. Foot. 1994;4(3):123–35.CrossRef Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: Rationale and methodology. Foot. 1994;4(3):123–35.CrossRef
18.
go back to reference Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Movement Sci. 1991; 10(5):575–587.CrossRef Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Movement Sci. 1991; 10(5):575–587.CrossRef
19.
go back to reference Peters EJ, Urukalo A, Fleischli JG, Lavery LA. Reproducibility of gait analysis variables: one-step versus three-step method of data acquisition. J Foot Ankle Surg. 2002;41(4):206–12.CrossRefPubMed Peters EJ, Urukalo A, Fleischli JG, Lavery LA. Reproducibility of gait analysis variables: one-step versus three-step method of data acquisition. J Foot Ankle Surg. 2002;41(4):206–12.CrossRefPubMed
20.
go back to reference Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait & posture. 2005;21(2):226–37.CrossRef Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait & posture. 2005;21(2):226–37.CrossRef
21.
go back to reference Eshraghi A, Abu Osman NA, Karimi M, Gholizadeh H, Soodmand E, Abas WABW. Gait Biomechanics of Individuals with Transtibial Amputation: Effect of Suspension System. PLoS ONE. 2014;9(5), e96988.CrossRefPubMedPubMedCentral Eshraghi A, Abu Osman NA, Karimi M, Gholizadeh H, Soodmand E, Abas WABW. Gait Biomechanics of Individuals with Transtibial Amputation: Effect of Suspension System. PLoS ONE. 2014;9(5), e96988.CrossRefPubMedPubMedCentral
22.
go back to reference Raspovic A. Gait characteristics of people with diabetes-related peripheral neuropathy, with and without a history of ulceration. Gait & posture. 2013;38(4):723–8.CrossRef Raspovic A. Gait characteristics of people with diabetes-related peripheral neuropathy, with and without a history of ulceration. Gait & posture. 2013;38(4):723–8.CrossRef
23.
go back to reference Qiu X, Tian DH, Han CL, Chen W, Wang ZJ, Mu ZY, et al. Risk Factors Correlated with Plantar Pressure in Chinese Patients with Type 2 Diabetes. Diabetes Technol Ther. 2013. Qiu X, Tian DH, Han CL, Chen W, Wang ZJ, Mu ZY, et al. Risk Factors Correlated with Plantar Pressure in Chinese Patients with Type 2 Diabetes. Diabetes Technol Ther. 2013.
24.
go back to reference Viswanathan V, Snehalatha C, Sivagami M, Seena R, Ramachandran A. Association of limited joint mobility and high plantar pressure in diabetic foot ulceration in Asian Indians. Diabetes Res Clin Pract. 2003;60(1):57–61.CrossRefPubMed Viswanathan V, Snehalatha C, Sivagami M, Seena R, Ramachandran A. Association of limited joint mobility and high plantar pressure in diabetic foot ulceration in Asian Indians. Diabetes Res Clin Pract. 2003;60(1):57–61.CrossRefPubMed
25.
go back to reference Bacarin TA, Sacco IC, Hennig EM. Plantar pressure distribution patterns during gait in diabetic neuropathy patients with a history of foot ulcers. Clinics (Sao Paulo, Brazil). 2009;64(2):113–20.CrossRefPubMedCentral Bacarin TA, Sacco IC, Hennig EM. Plantar pressure distribution patterns during gait in diabetic neuropathy patients with a history of foot ulcers. Clinics (Sao Paulo, Brazil). 2009;64(2):113–20.CrossRefPubMedCentral
26.
go back to reference Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait and Posture. 2008;27(4):706–9.CrossRefPubMed Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait and Posture. 2008;27(4):706–9.CrossRefPubMed
27.
go back to reference Du Prel JB, Hommel G, Röhrig B, Blettner M. Confidence interval or p-value? Part 4 of a series on evaluation of scientific publications. Deutsches Arzteblatt. 2009;106(19):335–9. Du Prel JB, Hommel G, Röhrig B, Blettner M. Confidence interval or p-value? Part 4 of a series on evaluation of scientific publications. Deutsches Arzteblatt. 2009;106(19):335–9.
28.
go back to reference Lin LI-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45(1):255–68.CrossRefPubMed Lin LI-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45(1):255–68.CrossRefPubMed
29.
go back to reference NIWA. Statistical calculators. In: The National Institute of Water and Atmospheric Research. http://www.niwa.co.nz/node/104318/concordance, http://www.niwa.co.nz/node/104318/concordance. 2013. http://www.niwa.co.nz/node/104318/concordance. Accessed 12th of November 2014. NIWA. Statistical calculators. In: The National Institute of Water and Atmospheric Research. http://​www.​niwa.​co.​nz/​node/​104318/​concordance, http://​www.​niwa.​co.​nz/​node/​104318/​concordance.​ 2013. http://www.niwa.co.nz/node/104318/concordance. Accessed 12th of November 2014.
30.
go back to reference McBride GB. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. 2005. McBride GB. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. 2005.
31.
go back to reference Altman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison Studies. The Statistician. 1983;32:307–17.CrossRef Altman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison Studies. The Statistician. 1983;32:307–17.CrossRef
32.
go back to reference O’Connor PD, Robinson ME, Shirley FR, Millan MM. The effect of marker placement deviations on spinal range of motion determined by video motion analysis. Physical therapy. 1993;73(7):478–83.CrossRefPubMed O’Connor PD, Robinson ME, Shirley FR, Millan MM. The effect of marker placement deviations on spinal range of motion determined by video motion analysis. Physical therapy. 1993;73(7):478–83.CrossRefPubMed
33.
go back to reference Chiari L, Croce UD, Leardini A, Cappozzo A. Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait & posture. 2005;21(2):197–211.CrossRef Chiari L, Croce UD, Leardini A, Cappozzo A. Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait & posture. 2005;21(2):197–211.CrossRef
34.
go back to reference Zammit GV, Menz HB, Munteanu SE. Reliability of the TekScan MatScan(R) system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J Foot Ankle Res. 2010;3:11.CrossRefPubMedPubMedCentral Zammit GV, Menz HB, Munteanu SE. Reliability of the TekScan MatScan(R) system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J Foot Ankle Res. 2010;3:11.CrossRefPubMedPubMedCentral
35.
go back to reference Cavanagh PR, Simoneau GG, Ulbrecht JS. Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. Journal of biomechanics. 1993;26 Suppl 1:23–40.CrossRefPubMed Cavanagh PR, Simoneau GG, Ulbrecht JS. Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. Journal of biomechanics. 1993;26 Suppl 1:23–40.CrossRefPubMed
36.
go back to reference Wearing SC, Urry S, Smeathers JE, Battistutta D. A comparison of gait initiation and termination methods for obtaining plantar foot pressures. Gait & posture. 1999;10:255–63.CrossRef Wearing SC, Urry S, Smeathers JE, Battistutta D. A comparison of gait initiation and termination methods for obtaining plantar foot pressures. Gait & posture. 1999;10:255–63.CrossRef
37.
go back to reference Armstrong DG, Lavery LA, Harkless LB. Validation of a Diabetic Wound Classification System- The contribution of depth, infection, and ischemia to risk of amputation. Diabetes care. 1998;21(5):855–9.CrossRefPubMed Armstrong DG, Lavery LA, Harkless LB. Validation of a Diabetic Wound Classification System- The contribution of depth, infection, and ischemia to risk of amputation. Diabetes care. 1998;21(5):855–9.CrossRefPubMed
Metadata
Title
The reproducibility of acquiring three dimensional gait and plantar pressure data using established protocols in participants with and without type 2 diabetes and foot ulcers
Authors
Malindu Fernando
Robert G Crowther
Margaret Cunningham
Peter A Lazzarini
Kunwarjit S Sangla
Petra Buttner
Jonathan Golledge
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2016
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-016-0135-8

Other articles of this Issue 1/2016

Journal of Foot and Ankle Research 1/2016 Go to the issue