Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2015

Open Access 01-12-2015 | Research

Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region

Authors: Juha Koivisto, Timo Kiljunen, Nils Kadesjö, Xie-Qi Shi, Jan Wolff

Published in: Journal of Foot and Ankle Research | Issue 1/2015

Login to get access

Abstract

Background

The aim of this study was to assess and compare the effective doses (ICRP 103) in the ankle region of X-ray imaging resulting from a multi slice computed tomography (MSCT) device, two cone beam CT (CBCT) devices and one conventional x-ray device.

Methods

Organ dose measurements were performed using 20 metal oxide field effect transistor (MOSFET) dosimeters that were placed in a custom made anthropomorphic RANDO ankle phantom. The following scanners were assessed in this study: Siemens Sensation Open 24-slice MSCT-scanner (120 kVp, 54 mAs), NewTom 5G CBCT scanner (110 kVp, 2.3 - 59 mAs), Planmed Verity CBCT-scanner (90 kVp, 48 mAs), Shimadzu FH-21 HR direct radiography equipment (AP + LAT), (57 kVp, 16 mAs).

Results

Measurements of the MSCT device resulted in 21.4 μSv effective dose. The effective doses of CBCTs were between 1.9 μSv and 14.3 μSv for NewTom 5G and 6.0 μSv for Planmed Verity. Effective doses for the Shimadzu FH-21 HR conventional radiography were 1.0 μSv (LAT) and 0.5 μSv (AP), respectively.

Conclusions

Compared with a conventional 2D radiographic device, this study showed a 14-fold effective dose for standard MSCT and 1.3 -10 fold effective dose for standard CBCT protocols. CBCT devices offers a 3D view of ankle imaging and exhibited lower effective doses compared with MSCT.
Literature
1.
go back to reference Rogers LF. In: Radiology of Skeletal Trauma. 2nd ed. New York: Churchill Livingstone; 1992. Rogers LF. In: Radiology of Skeletal Trauma. 2nd ed. New York: Churchill Livingstone; 1992.
2.
go back to reference Sanders R. Displaced intra-articular fractures of the calcaneus. J Bone Joint Surg. 2000;82:225–50.PubMed Sanders R. Displaced intra-articular fractures of the calcaneus. J Bone Joint Surg. 2000;82:225–50.PubMed
3.
go back to reference Atkins R. Pathology of calcaneal fractures. J Bone Joint Surg Br. 2001;83:326–7. Atkins R. Pathology of calcaneal fractures. J Bone Joint Surg Br. 2001;83:326–7.
4.
go back to reference Kuner EH, Lindenmaier HL, Munst P. Talus fractures. In: Tscherne H, Schatzker J, editors. Major Fractures of the Pilon, the Talus, and the Calcaneus: Current Concepts of Treatment. Berlin: Springer-Verlag; 1993. p. 71–85. Kuner EH, Lindenmaier HL, Munst P. Talus fractures. In: Tscherne H, Schatzker J, editors. Major Fractures of the Pilon, the Talus, and the Calcaneus: Current Concepts of Treatment. Berlin: Springer-Verlag; 1993. p. 71–85.
6.
go back to reference Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional Volume Rendering of Spiral CT Data: Theory and Method. Radiographics. 1999;19:745–764.1.CrossRefPubMed Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional Volume Rendering of Spiral CT Data: Theory and Method. Radiographics. 1999;19:745–764.1.CrossRefPubMed
7.
go back to reference Brenner DJ, Hall EJ. Computed tomography — an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefPubMed Brenner DJ, Hall EJ. Computed tomography — an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefPubMed
8.
go back to reference ICRP-22. Implication of Commission Recommendations that Doses be Kept as Low as Readily Achievable (Publication 22). Oxford: Pergamon Press; 1973. ICRP-22. Implication of Commission Recommendations that Doses be Kept as Low as Readily Achievable (Publication 22). Oxford: Pergamon Press; 1973.
9.
go back to reference Ludlow J, Ivanovic M. Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diagnostic Imaging. 2014;1:2.CrossRef Ludlow J, Ivanovic M. Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diagnostic Imaging. 2014;1:2.CrossRef
10.
go back to reference Zbijewski W, De Jean P, Prakash P, Ding Y, Stayman J, Packard N, et al. Design and optimization of a dedicated cone-beam CT system for musculoskeletal extremities imaging. Medical imaging 2011: physics of medical imaging. Proc SPIE. 2011;7961:796104–796104–8.CrossRef Zbijewski W, De Jean P, Prakash P, Ding Y, Stayman J, Packard N, et al. Design and optimization of a dedicated cone-beam CT system for musculoskeletal extremities imaging. Medical imaging 2011: physics of medical imaging. Proc SPIE. 2011;7961:796104–796104–8.CrossRef
11.
go back to reference Mattila KT, Kankare J, Kortesniemi M, Salo J, Lindfors N, Mattila J, et al. Cone beam CT for extremity imaging. EPOS Abstract, ECR 2011, Vienna March 3–7,2011. doi:10.1594/ecr2011/C-0297. Mattila KT, Kankare J, Kortesniemi M, Salo J, Lindfors N, Mattila J, et al. Cone beam CT for extremity imaging. EPOS Abstract, ECR 2011, Vienna March 3–7,2011. doi:10.1594/ecr2011/C-0297.
12.
go back to reference Hodez C, Griffaton-Taillandier C, Bensimon I. Cone-beam imaging: applications in ENT, European Annals of Otorhinolaryngology. Head Neck dis. 2011;128:65–78 [21; 34; 51]. Hodez C, Griffaton-Taillandier C, Bensimon I. Cone-beam imaging: applications in ENT, European Annals of Otorhinolaryngology. Head Neck dis. 2011;128:65–78 [21; 34; 51].
13.
go back to reference Tuominen EK, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol. 2013;200(1):146–8. doi:10.2214/AJR.12.8481.CrossRefPubMed Tuominen EK, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol. 2013;200(1):146–8. doi:10.2214/AJR.12.8481.CrossRefPubMed
14.
go back to reference McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259:311–6.CrossRefPubMedPubMedCentral McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259:311–6.CrossRefPubMedPubMedCentral
15.
go back to reference Kim S, Song H, Samei E, Yin F, Yoshizumi TT. Computed tomography dose index and dose length product for cone-beam CT: Monte Carlo simulations of a commercial system. J Appl Clin Med Phys. 2011;12(2):84–95. Kim S, Song H, Samei E, Yin F, Yoshizumi TT. Computed tomography dose index and dose length product for cone-beam CT: Monte Carlo simulations of a commercial system. J Appl Clin Med Phys. 2011;12(2):84–95.
16.
go back to reference International commission on Radiological Protection (ICRP). Recommendations of the ICRP. ICRP Publication 103. Ann ICRP 2008:37:2-4, pp. 23. International commission on Radiological Protection (ICRP). Recommendations of the ICRP. ICRP Publication 103. Ann ICRP 2008:37:2-4, pp. 23.
17.
go back to reference Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X-ray for knee area using MOSFET dosemeters, Radiation Protection Dosimetry. 2013;1–10. doi:10.1093/rpd/nct162. Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X-ray for knee area using MOSFET dosemeters, Radiation Protection Dosimetry. 2013;1–10. doi:10.1093/rpd/nct162.
18.
go back to reference Bower MW, Hinterlang HE. The characterization of a commercial MOSFET dosimeter system for use in diagnostic X-ray. Health Phys. 1998;75(2):197–204.CrossRefPubMed Bower MW, Hinterlang HE. The characterization of a commercial MOSFET dosimeter system for use in diagnostic X-ray. Health Phys. 1998;75(2):197–204.CrossRefPubMed
19.
go back to reference Koivisto J, Schulze D, Wolff J, Rottke D. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters; A comparative study. Dentomaxillofac Radiol. 2014 Aug 21:20140202. [Epub ahead of print]. Koivisto J, Schulze D, Wolff J, Rottke D. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters; A comparative study. Dentomaxillofac Radiol. 2014 Aug 21:20140202. [Epub ahead of print].
20.
go back to reference Koivisto J, Kiljunen T, Tapiovaara M, Wolff J, Kortesniemi M. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(3):393–400.CrossRefPubMed Koivisto J, Kiljunen T, Tapiovaara M, Wolff J, Kortesniemi M. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(3):393–400.CrossRefPubMed
21.
go back to reference Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81(2):267–71. doi:10.1016/j.ejrad.2010.11.028. Epub 2010 Dec 31.CrossRefPubMed Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81(2):267–71. doi:10.1016/j.ejrad.2010.11.028. Epub 2010 Dec 31.CrossRefPubMed
22.
go back to reference Loubele M, Bogaerts R, VanDijck E, Pauwels R, Vanheusdena S, Suetens P, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2008. doi:10.1016/j.ejrad.2008.06.002. Loubele M, Bogaerts R, VanDijck E, Pauwels R, Vanheusdena S, Suetens P, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2008. doi:10.1016/j.ejrad.2008.06.002.
23.
go back to reference Hindorf C, Glatting G, Chiesa C, Linden O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-010-1422-4. Hindorf C, Glatting G, Chiesa C, Linden O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-010-1422-4.
24.
go back to reference Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC, et al. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Clinical Science. 1999;96:647–57.CrossRefPubMed Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC, et al. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Clinical Science. 1999;96:647–57.CrossRefPubMed
25.
go back to reference Les CM, Beaupre GS, Yan CH, Cleek TM, Wills JS. The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood. J Orthop Res. 2002;20(3):633–41.CrossRefPubMed Les CM, Beaupre GS, Yan CH, Cleek TM, Wills JS. The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood. J Orthop Res. 2002;20(3):633–41.CrossRefPubMed
26.
go back to reference Basic Anatomical & Physiological Data for use in Radiological Protection - The Skeleton. ICRP Publication 70. Ann ICRP. 25 (2), 1995, pp.21-22. Basic Anatomical & Physiological Data for use in Radiological Protection - The Skeleton. ICRP Publication 70. Ann ICRP. 25 (2), 1995, pp.21-22.
27.
go back to reference Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. ICRP Publication 89. Ann ICRP. 2002;32(3–4):171-172. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. ICRP Publication 89. Ann ICRP. 2002;32(3–4):171-172.
28.
go back to reference Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.CrossRef Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.CrossRef
29.
go back to reference Hill RL, Rathbone BA Hanford. Technical Basis for Multiple Dosimetry Effective Dose Methodology. PNNL-19675, Pacific Northwest National Laboratory, Richland, WA. PNNL-19675, Pacific Northwest National Laboratory, Richland, WA. Hill RL. 2010. Hill RL, Rathbone BA Hanford. Technical Basis for Multiple Dosimetry Effective Dose Methodology. PNNL-19675, Pacific Northwest National Laboratory, Richland, WA. PNNL-19675, Pacific Northwest National Laboratory, Richland, WA. Hill RL. 2010.
31.
go back to reference Ward SR, Eng C, Smallwood LH, Lieber RL. Are Current Measurements of Lower Extremity Muscle Architecture Accurate? Clin Orthop Relat Res. 2009;467:1074–82. doi:10.1007/s11999-008-0594-8.CrossRefPubMed Ward SR, Eng C, Smallwood LH, Lieber RL. Are Current Measurements of Lower Extremity Muscle Architecture Accurate? Clin Orthop Relat Res. 2009;467:1074–82. doi:10.1007/s11999-008-0594-8.CrossRefPubMed
32.
go back to reference Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material. J Radiation Res. 2013;00:1–7. doi:10.1093/jrr/rrt015. Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material. J Radiation Res. 2013;00:1–7. doi:10.1093/jrr/rrt015.
33.
go back to reference Ehringfeld C, Schmid S, Poljanc K, Kirisits C, Aiginger H, Georg D. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV. Phys Med Biol. 2005;50(2):289–303.CrossRefPubMed Ehringfeld C, Schmid S, Poljanc K, Kirisits C, Aiginger H, Georg D. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV. Phys Med Biol. 2005;50(2):289–303.CrossRefPubMed
35.
go back to reference McGlamry. BONE MARROW ASPIRATE: Science and Application in Foot and Ankle Surgery. McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery Chapter 22 p.111- 113. Philadelphia: Lippincott Williams & Wilkins; 2012. McGlamry. BONE MARROW ASPIRATE: Science and Application in Foot and Ankle Surgery. McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery Chapter 22 p.111- 113. Philadelphia: Lippincott Williams & Wilkins; 2012.
36.
go back to reference Schweinberger M, Roukis T. Percutaneous autologous bone marrow harvest from calcaneus and proximal tibia: surgical technique. J Foot Ankle Surg. 2007;5:411–4.CrossRef Schweinberger M, Roukis T. Percutaneous autologous bone marrow harvest from calcaneus and proximal tibia: surgical technique. J Foot Ankle Surg. 2007;5:411–4.CrossRef
37.
go back to reference Huda W, Gkanatsios NA. Radiation dosimetry for extremity radiographs. Health Physics. 1998;75:492–9.CrossRefPubMed Huda W, Gkanatsios NA. Radiation dosimetry for extremity radiographs. Health Physics. 1998;75:492–9.CrossRefPubMed
38.
go back to reference Cross M, Smart R, Thomson J. Exposure to diagnostic ionizing radiation in sports medicine: assessing and monitoring the risk. Clin J Sport Med. 2003;13:164–70.CrossRefPubMed Cross M, Smart R, Thomson J. Exposure to diagnostic ionizing radiation in sports medicine: assessing and monitoring the risk. Clin J Sport Med. 2003;13:164–70.CrossRefPubMed
39.
go back to reference Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91:1882–9. d doi:10.2106/JBJS.H.01199.CrossRefPubMed Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91:1882–9. d doi:10.2106/JBJS.H.01199.CrossRefPubMed
40.
go back to reference Dalinka MK, Alazraki N, Berquist TH, Daffner RH, DeSmet AA, el-Khoury GY, et al. Imaging evaluation of suspected ankle fractures. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000;215(Suppl):239–41.PubMed Dalinka MK, Alazraki N, Berquist TH, Daffner RH, DeSmet AA, el-Khoury GY, et al. Imaging evaluation of suspected ankle fractures. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000;215(Suppl):239–41.PubMed
Metadata
Title
Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region
Authors
Juha Koivisto
Timo Kiljunen
Nils Kadesjö
Xie-Qi Shi
Jan Wolff
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2015
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-015-0067-8

Other articles of this Issue 1/2015

Journal of Foot and Ankle Research 1/2015 Go to the issue