Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2023

Open Access 01-12-2023 | Metastasis | Research

Silencing LCN2 suppresses oral squamous cell carcinoma progression by reducing EGFR signal activation and recycling

Authors: Zixian Huang, Xi Rui, Chen Yi, Yongju Chen, Rui Chen, Yancan Liang, Yan Wang, Weicheng Yao, Xiaoding Xu, Zhiquan Huang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2023

Login to get access

Abstract

Background

EGFR is an important signal involved in tumor growth that can induce tumor metastasis and drug resistance. Exploring targets for effective EGFR regulation is an important topic in current research and drug development. Inhibiting EGFR can effectively inhibit the progression and lymph node metastasis of oral squamous cell carcinoma (OSCC) because OSCC is a type of cancer with high EGFR expression. However, the problem of EGFR drug resistance is particularly prominent, and identifying a new target for EGFR regulation could reveal an effective strategy.

Methods

We sequenced wild type or EGFR-resistant OSCC cells and samples from OSCC patients with or without lymph node metastasis to find new targets for EGFR regulation to effectively replace the strategy of directly inhibiting EGFR and exert an antitumor effect. We then investigated the effect of LCN2 on OSCC biological abilities in vitro and in vivo through protein expression regulation. Subsequently, we elucidated the regulatory mechanism of LCN2 through mass spectrometry, protein interaction, immunoblotting, and immunofluorescence analyses. As a proof of concept, a reduction-responsive nanoparticle (NP) platform was engineered for effective LCN2 siRNA (siLCN2) delivery, and a tongue orthotopic xenograft model as well as an EGFR-positive patient-derived xenograft (PDX) model were applied to investigate the curative effect of siLCN2.

Results

We identified lipocalin-2 (LCN2), which is upregulated in OSCC metastasis and EGFR resistance. Inhibition of LCN2 expression can effectively inhibit the proliferation and metastasis of OSCC in vitro and in vivo by inhibiting EGFR phosphorylation and downstream signal activation. Mechanistically, LCN2 binds EGFR and enhances the recycling of EGFR, thereby activating the EGFR-MEK-ERK cascade. Inhibition of LCN2 effectively inhibited the activation of EGFR. We translated this finding by systemic delivery of siLCN2 by NPs, which effectively downregulated LCN2 in the tumor tissues, thereby leading to a significant inhibition of the growth and metastasis of xenografts.

Conclusions

This research indicated that targeting LCN2 could be a promising strategy for the treatment of OSCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol. 2014;6(3):a008912. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol. 2014;6(3):a008912.
2.
go back to reference Zhang HL, Li Y. Recent Trend for EGFR-Based and ALK-Based Targets: A Patent Analysis. Recent Pat Anticancer Drug Discov. 2021;16(3):298–311.PubMedCrossRef Zhang HL, Li Y. Recent Trend for EGFR-Based and ALK-Based Targets: A Patent Analysis. Recent Pat Anticancer Drug Discov. 2021;16(3):298–311.PubMedCrossRef
3.
go back to reference Modest DP, Stintzing S, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, et al. Impact of Subsequent Therapies on Outcome of the FIRE-3/AIO KRK0306 Trial: First-Line Therapy With FOLFIRI Plus Cetuximab or Bevacizumab in Patients With KRAS Wild-Type Tumors in Metastatic Colorectal Cancer. J Clin Oncol. 2015;33(32):3718–26.PubMedCrossRef Modest DP, Stintzing S, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, et al. Impact of Subsequent Therapies on Outcome of the FIRE-3/AIO KRK0306 Trial: First-Line Therapy With FOLFIRI Plus Cetuximab or Bevacizumab in Patients With KRAS Wild-Type Tumors in Metastatic Colorectal Cancer. J Clin Oncol. 2015;33(32):3718–26.PubMedCrossRef
4.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef
5.
go back to reference Chawla JP, Iyer N, Soodan KS, Sharma A, KhuranaandP SK. Role of miRNA in cancer diagnosis, prognosis, therapy and regulation of its expression by Epstein-Barr virus and human papillomaviruses: With special reference to oral cancer. Oral Oncol. 2015;51(8):731–7.PubMedCrossRef Chawla JP, Iyer N, Soodan KS, Sharma A, KhuranaandP SK. Role of miRNA in cancer diagnosis, prognosis, therapy and regulation of its expression by Epstein-Barr virus and human papillomaviruses: With special reference to oral cancer. Oral Oncol. 2015;51(8):731–7.PubMedCrossRef
6.
go back to reference Ho CM, Lam KH, Wei WI, Lauand SK, Lam LK. Occult lymph node metastasis in small oral tongue cancers. Head Neck. 1992;14(5):359–63.PubMedCrossRef Ho CM, Lam KH, Wei WI, Lauand SK, Lam LK. Occult lymph node metastasis in small oral tongue cancers. Head Neck. 1992;14(5):359–63.PubMedCrossRef
7.
go back to reference Normanno N, Maiello MR, De Luca A. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): simple drugs with a complex mechanism of action? J Cell Physiol. 2003;194(1):13–9.PubMedCrossRef Normanno N, Maiello MR, De Luca A. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): simple drugs with a complex mechanism of action? J Cell Physiol. 2003;194(1):13–9.PubMedCrossRef
8.
go back to reference Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemisand EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009;13(3):339–62.PubMedPubMedCentralCrossRef Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemisand EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009;13(3):339–62.PubMedPubMedCentralCrossRef
10.
go back to reference Ho AS, Kraus DH, Ganly I, Lee NY, Shah JP, Morris LG. Decision making in the management of recurrent head and neck cancer. Head Neck. 2014;36(1):144–51.PubMedCrossRef Ho AS, Kraus DH, Ganly I, Lee NY, Shah JP, Morris LG. Decision making in the management of recurrent head and neck cancer. Head Neck. 2014;36(1):144–51.PubMedCrossRef
11.
go back to reference Huang X, Wu G, Liu C, Hua X, Tang Z, Xiao Y, et al. Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. Nano Lett. 2021;21(22):9706–14.PubMedCrossRef Huang X, Wu G, Liu C, Hua X, Tang Z, Xiao Y, et al. Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. Nano Lett. 2021;21(22):9706–14.PubMedCrossRef
12.
go back to reference Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano. 2021;15(5):8267–82.PubMedCrossRef Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano. 2021;15(5):8267–82.PubMedCrossRef
13.
14.
go back to reference Zhang X, Cai A, Gao Y, Zhang Y, Duan X, Men K. Treatment of Melanoma by Nano-conjugate-Delivered Wee1 siRNA. Mol Pharm. 2021;18(9):3387–400.PubMedCrossRef Zhang X, Cai A, Gao Y, Zhang Y, Duan X, Men K. Treatment of Melanoma by Nano-conjugate-Delivered Wee1 siRNA. Mol Pharm. 2021;18(9):3387–400.PubMedCrossRef
15.
go back to reference Zhang W, Pan R, Lu M, Zhang Q, Lin Z, Qin Y, et al. Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin beta3/SRC pathway. Oncogene. 2021;40(45):6369–80.PubMedCrossRef Zhang W, Pan R, Lu M, Zhang Q, Lin Z, Qin Y, et al. Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin beta3/SRC pathway. Oncogene. 2021;40(45):6369–80.PubMedCrossRef
16.
go back to reference Yammine L, Zablocki A, Baron W, TerziandM F. Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking. Cell Rep. 2019;29(7):2067–77.e6.PubMedCrossRef Yammine L, Zablocki A, Baron W, TerziandM F. Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking. Cell Rep. 2019;29(7):2067–77.e6.PubMedCrossRef
17.
go back to reference Xu J, Lv S, Meng W, Zuo F. LCN2 Mediated by IL-17 Affects the Proliferation, Migration, Invasion and Cell Cycle of Gastric Cancer Cells by Targeting SLPI. Cancer Manag Res. 2020;12:12841–9.PubMedPubMedCentralCrossRef Xu J, Lv S, Meng W, Zuo F. LCN2 Mediated by IL-17 Affects the Proliferation, Migration, Invasion and Cell Cycle of Gastric Cancer Cells by Targeting SLPI. Cancer Manag Res. 2020;12:12841–9.PubMedPubMedCentralCrossRef
18.
go back to reference Santiago-Sanchez GS, Pita-Grisanti V, Quinones-Diaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejia PE. Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci. 2020;21(12):4365. Santiago-Sanchez GS, Pita-Grisanti V, Quinones-Diaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejia PE. Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci. 2020;21(12):4365.
19.
go back to reference Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099–106.PubMedPubMedCentralCrossRef Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099–106.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, Grovdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic. 2009;10(8):1115–27.PubMedPubMedCentralCrossRef Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, Grovdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic. 2009;10(8):1115–27.PubMedPubMedCentralCrossRef
22.
go back to reference Zhang ZS, Wang J, Zhu BQ, Ge L. Long noncoding RNA UCA1 promotes multiple myeloma cell growth by targeting TGF-beta. Eur Rev Med Pharmacol Sci. 2020;24(24):12623.PubMed Zhang ZS, Wang J, Zhu BQ, Ge L. Long noncoding RNA UCA1 promotes multiple myeloma cell growth by targeting TGF-beta. Eur Rev Med Pharmacol Sci. 2020;24(24):12623.PubMed
23.
go back to reference Kim WJ, Bae EM, Kang YJ, Bae HU, Hong SH, Lee JY, et al. Glucocorticoid-induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques. Immunology. 2006;119(3):421–9.PubMedPubMedCentralCrossRef Kim WJ, Bae EM, Kang YJ, Bae HU, Hong SH, Lee JY, et al. Glucocorticoid-induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques. Immunology. 2006;119(3):421–9.PubMedPubMedCentralCrossRef
24.
go back to reference Hraba-Renevey S, Turler H, Kress M, Salomon C, Weil R. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene. 1989;4(5):601–8.PubMed Hraba-Renevey S, Turler H, Kress M, Salomon C, Weil R. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene. 1989;4(5):601–8.PubMed
25.
go back to reference Miki M, Oono T, Fujimori N, Takaoka T, Kawabe K, Miyasaka Y, et al. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors. Cancer Med. 2019;8(8):3748–60.PubMedPubMedCentralCrossRef Miki M, Oono T, Fujimori N, Takaoka T, Kawabe K, Miyasaka Y, et al. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors. Cancer Med. 2019;8(8):3748–60.PubMedPubMedCentralCrossRef
26.
go back to reference Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, et al. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res. 2017;77(10):2647–60.PubMedPubMedCentralCrossRef Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, et al. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res. 2017;77(10):2647–60.PubMedPubMedCentralCrossRef
27.
go back to reference Chiang KC, Yeh TS, Wu RC, Pang JS, Cheng CT, Wang SY, et al. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep. 2016;6:36138.PubMedPubMedCentralCrossRef Chiang KC, Yeh TS, Wu RC, Pang JS, Cheng CT, Wang SY, et al. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep. 2016;6:36138.PubMedPubMedCentralCrossRef
28.
go back to reference Du ZP, Wu BL, Xie YM, Zhang YL, Liao LD, Zhou F, et al. Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop. Biochim Biophys Acta. 2015;1853(10 PT A):2240–50.PubMedCrossRef Du ZP, Wu BL, Xie YM, Zhang YL, Liao LD, Zhou F, et al. Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop. Biochim Biophys Acta. 2015;1853(10 PT A):2240–50.PubMedCrossRef
29.
go back to reference Wang F, Zhang C, Cheng H, Liu C, Lu Z, Zheng S, et al. TGF-beta-induced PLEK2 promotes metastasis and chemoresistance in oesophageal squamous cell carcinoma by regulating LCN2. Cell Death Dis. 2021;12(10):901.PubMedPubMedCentralCrossRef Wang F, Zhang C, Cheng H, Liu C, Lu Z, Zheng S, et al. TGF-beta-induced PLEK2 promotes metastasis and chemoresistance in oesophageal squamous cell carcinoma by regulating LCN2. Cell Death Dis. 2021;12(10):901.PubMedPubMedCentralCrossRef
30.
go back to reference Hsieh YH, Tsai JP, Yu CL, Lee CC, HsuandJ JC, Chen C. Overexpression of Lipocalin-2 Inhibits Proliferation and Invasiveness of Human Glioblastoma Multiforme Cells by Activating ERK Targeting Cathepsin D Expression. Biology (Basel). 2021;10(5):390. Hsieh YH, Tsai JP, Yu CL, Lee CC, HsuandJ JC, Chen C. Overexpression of Lipocalin-2 Inhibits Proliferation and Invasiveness of Human Glioblastoma Multiforme Cells by Activating ERK Targeting Cathepsin D Expression. Biology (Basel). 2021;10(5):390.
31.
go back to reference Lu KH, Yang JS, Hsieh YH, Chu HJ, Chou CH, Lu EW, et al. Lipocalin-2 Inhibits Osteosarcoma Cell Metastasis by Suppressing MET Expression via the MEK-ERK Pathway. Cancers (Basel). 2021;13(13):3181. Lu KH, Yang JS, Hsieh YH, Chu HJ, Chou CH, Lu EW, et al. Lipocalin-2 Inhibits Osteosarcoma Cell Metastasis by Suppressing MET Expression via the MEK-ERK Pathway. Cancers (Basel). 2021;13(13):3181.
32.
go back to reference Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001;276(40):37258–65.PubMedCrossRef Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001;276(40):37258–65.PubMedCrossRef
33.
go back to reference Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.PubMedPubMedCentralCrossRef Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.PubMedPubMedCentralCrossRef
34.
go back to reference Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R, Shmulevich I, et al. N GAL decreases E-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Invest. 2009;89(5):531–48.PubMedPubMedCentralCrossRef Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R, Shmulevich I, et al. N GAL decreases E-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Invest. 2009;89(5):531–48.PubMedPubMedCentralCrossRef
35.
go back to reference Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820(3):291–317.PubMedCrossRef Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820(3):291–317.PubMedCrossRef
36.
go back to reference Syed SN, Jung M, WeigertandB A. Brune, S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1beta or Lipocalin-2. Mediators Inflamm. 2017;2017:7510496.PubMedPubMedCentralCrossRef Syed SN, Jung M, WeigertandB A. Brune, S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1beta or Lipocalin-2. Mediators Inflamm. 2017;2017:7510496.PubMedPubMedCentralCrossRef
37.
go back to reference Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, et al. A New Role for ERalpha: Silencing via DNA Methylation of Basal, Stem Cell, and EMT Genes. Mol Cancer Res. 2017;15(2):152–64.PubMedCrossRef Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, et al. A New Role for ERalpha: Silencing via DNA Methylation of Basal, Stem Cell, and EMT Genes. Mol Cancer Res. 2017;15(2):152–64.PubMedCrossRef
38.
go back to reference Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, et al. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal. 2015;8(364):ra18.PubMedCrossRef Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, et al. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal. 2015;8(364):ra18.PubMedCrossRef
39.
go back to reference Boulay PL, Mitchell L, Turpin J, Huot-Marchand JE, Lavoie C, Sanguin-Gendreau V, et al. Rab11-FIP1C Is a Critical Negative Regulator in ErbB2-Mediated Mammary Tumor Progression. Cancer Res. 2016;76(9):2662–74.PubMedPubMedCentralCrossRef Boulay PL, Mitchell L, Turpin J, Huot-Marchand JE, Lavoie C, Sanguin-Gendreau V, et al. Rab11-FIP1C Is a Critical Negative Regulator in ErbB2-Mediated Mammary Tumor Progression. Cancer Res. 2016;76(9):2662–74.PubMedPubMedCentralCrossRef
40.
go back to reference Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.PubMedCrossRef Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.PubMedCrossRef
41.
go back to reference Lanzetti L, Di Fiore PP. Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res. 2017;77(8):1813–7.PubMedCrossRef Lanzetti L, Di Fiore PP. Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res. 2017;77(8):1813–7.PubMedCrossRef
42.
go back to reference Ben-Chetrit N, Chetrit D, Russell R, Korner C, Mancini M, Abdul-Hai A, et al. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci Signal. 2015;8(360):ra7.PubMedCrossRef Ben-Chetrit N, Chetrit D, Russell R, Korner C, Mancini M, Abdul-Hai A, et al. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci Signal. 2015;8(360):ra7.PubMedCrossRef
44.
go back to reference Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.PubMedCrossRef Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.PubMedCrossRef
45.
go back to reference Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.PubMedCrossRef Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.PubMedCrossRef
46.
47.
go back to reference Li Y, Xiao K, Zhu W, DengandK W, Lam S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev. 2014;66:58–73.PubMedCrossRef Li Y, Xiao K, Zhu W, DengandK W, Lam S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev. 2014;66:58–73.PubMedCrossRef
48.
go back to reference Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.PubMedCrossRef Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.PubMedCrossRef
49.
go back to reference Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, et al. Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/beta-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. Adv Sci (Weinh). 2020;7(18):2000915.PubMedCrossRef Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, et al. Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/beta-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. Adv Sci (Weinh). 2020;7(18):2000915.PubMedCrossRef
Metadata
Title
Silencing LCN2 suppresses oral squamous cell carcinoma progression by reducing EGFR signal activation and recycling
Authors
Zixian Huang
Xi Rui
Chen Yi
Yongju Chen
Rui Chen
Yancan Liang
Yan Wang
Weicheng Yao
Xiaoding Xu
Zhiquan Huang
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Metastasis
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2023
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02618-z

Other articles of this Issue 1/2023

Journal of Experimental & Clinical Cancer Research 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine