Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2022

Open Access 01-12-2022 | Metastasis | Research

The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway

Authors: Margherita Pergolizzi, Laura Bizzozero, Federica Maione, Elena Maldi, Claudio Isella, Marco Macagno, Elisa Mariella, Alberto Bardelli, Enzo Medico, Caterina Marchiò, Guido Serini, Federica Di Nicolantonio, Federico Bussolino, Marco Arese

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/β-catenin pathway.

Methods

After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied.

Results

Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates β-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an “EMT phenotype” in CRC cell lines

Conclusions

In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hagel C, Stavrou D. Neuronal markers in non-neuronal tissues. Prog Exp Tumor Res. 2007;39:64–77. Hagel C, Stavrou D. Neuronal markers in non-neuronal tissues. Prog Exp Tumor Res. 2007;39:64–77.
2.
go back to reference Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Neuronal signatures in cancer. Int J Cancer. 2020;147(12):3281–91.PubMedCrossRef Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Neuronal signatures in cancer. Int J Cancer. 2020;147(12):3281–91.PubMedCrossRef
3.
go back to reference Yu Q, Wang X, Yang Y, Chi P, Huang J, Qiu S, et al. Upregulated NLGN1 predicts poor survival in colorectal cancer. BMC Cancer. 2021;21(1):1–11.CrossRef Yu Q, Wang X, Yang Y, Chi P, Huang J, Qiu S, et al. Upregulated NLGN1 predicts poor survival in colorectal cancer. BMC Cancer. 2021;21(1):1–11.CrossRef
4.
go back to reference Bottos A, Rissone A, Bussolino F, Arese M. Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci. 2011;68(16):2655–66.PubMedCrossRef Bottos A, Rissone A, Bussolino F, Arese M. Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci. 2011;68(16):2655–66.PubMedCrossRef
5.
go back to reference Samarelli AV, Riccitelli E, Bizzozero L, Silveira TN, Seano G, Pergolizzi M, et al. Neuroligin 1 induces blood vessel maturation by cooperating with the ɑ6 integrin. J Biol Chem. 2014;289(28):19466–76.PubMedPubMedCentralCrossRef Samarelli AV, Riccitelli E, Bizzozero L, Silveira TN, Seano G, Pergolizzi M, et al. Neuroligin 1 induces blood vessel maturation by cooperating with the ɑ6 integrin. J Biol Chem. 2014;289(28):19466–76.PubMedPubMedCentralCrossRef
6.
go back to reference Rissone A, Foglia E, Sangiorgio L, Cermenati S, Nicoli S, Cimbro S, et al. The synaptic proteins β-neurexin and neuroligin synergize with extracellular matrix-binding vascular endothelial growth factor A during zebrafish vascular development. Arterioscler Thromb Vasc Biol. 2012;32(7):1563–72.PubMedCrossRef Rissone A, Foglia E, Sangiorgio L, Cermenati S, Nicoli S, Cimbro S, et al. The synaptic proteins β-neurexin and neuroligin synergize with extracellular matrix-binding vascular endothelial growth factor A during zebrafish vascular development. Arterioscler Thromb Vasc Biol. 2012;32(7):1563–72.PubMedCrossRef
7.
go back to reference Bottos A, Destro E, Rissone A, Graziano S, Cordara G, Assenzio B, et al. The synaptic proteins neurexins and neuroligins are widely expressed in the vascular system and contribute to its functions. Proc Natl Acad Sci U S A. 2009;106(49):20782–7.PubMedPubMedCentralCrossRef Bottos A, Destro E, Rissone A, Graziano S, Cordara G, Assenzio B, et al. The synaptic proteins neurexins and neuroligins are widely expressed in the vascular system and contribute to its functions. Proc Natl Acad Sci U S A. 2009;106(49):20782–7.PubMedPubMedCentralCrossRef
8.
go back to reference Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: a challenge for personalized medicine? Int J Mol Sci. 2018;19(12):3733.PubMedCentralCrossRef Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: a challenge for personalized medicine? Int J Mol Sci. 2018;19(12):3733.PubMedCentralCrossRef
9.
go back to reference Di Nicolantonio F, Vitiello PP, Marsoni S, Siena S, Tabernero J, Trusolino L, et al. Precision oncology in metastatic colorectal cancer—From biology to medicine. Nat Rev Clin Oncol. 2021;18(8):506–25.PubMedCrossRef Di Nicolantonio F, Vitiello PP, Marsoni S, Siena S, Tabernero J, Trusolino L, et al. Precision oncology in metastatic colorectal cancer—From biology to medicine. Nat Rev Clin Oncol. 2021;18(8):506–25.PubMedCrossRef
10.
go back to reference Goel G. Molecular characterization and biomarker identification in colorectal cancer: Toward realization of the precision medicine dream. Cancer Manag Res. 2018;10:5895.PubMedPubMedCentralCrossRef Goel G. Molecular characterization and biomarker identification in colorectal cancer: Toward realization of the precision medicine dream. Cancer Manag Res. 2018;10:5895.PubMedPubMedCentralCrossRef
11.
go back to reference Koelzer VH, Zlobec I, Lugli A. Tumor budding in colorectal cancer—ready for diagnostic practice? Hum Pathol. 2016;47(1):4–19.PubMedCrossRef Koelzer VH, Zlobec I, Lugli A. Tumor budding in colorectal cancer—ready for diagnostic practice? Hum Pathol. 2016;47(1):4–19.PubMedCrossRef
12.
go back to reference Zlobec I, Lugli A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1(7):651.PubMedPubMedCentralCrossRef Zlobec I, Lugli A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1(7):651.PubMedPubMedCentralCrossRef
13.
go back to reference Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–311.PubMedCrossRef Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–311.PubMedCrossRef
15.
go back to reference Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5):51.PubMedCentralCrossRef Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5):51.PubMedCentralCrossRef
17.
go back to reference Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 1975;35(3):512–6.PubMed Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 1975;35(3):512–6.PubMed
18.
go back to reference Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 2001;61(1):333–8.PubMed Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 2001;61(1):333–8.PubMed
19.
go back to reference Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell. 2017;32(3):282–93.PubMedCrossRef Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell. 2017;32(3):282–93.PubMedCrossRef
21.
go back to reference Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.PubMedCrossRef Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.PubMedCrossRef
22.
23.
go back to reference Sheridan C. Wnt is back in drugmakers’ sights, but is it druggable? Nat Biotechnol. 2018;36(11):1028–30.PubMedCrossRef Sheridan C. Wnt is back in drugmakers’ sights, but is it druggable? Nat Biotechnol. 2018;36(11):1028–30.PubMedCrossRef
24.
go back to reference Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, et al. Neuroligins determine synapse maturation and function. Neuron. 2006;51(6):741–54.PubMedCrossRef Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, et al. Neuroligins determine synapse maturation and function. Neuron. 2006;51(6):741–54.PubMedCrossRef
26.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.PubMedPubMedCentralCrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.PubMedPubMedCentralCrossRef
27.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-4. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-4.
28.
go back to reference Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat Commun. 2015;6:7002.PubMedCrossRef Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat Commun. 2015;6:7002.PubMedCrossRef
29.
go back to reference Yang S, Zhang JJ, Huang X-Y. Mouse models for tumor metastasis. Rational drug design: methods and protocols. Springer; 2012;221–8. Yang S, Zhang JJ, Huang X-Y. Mouse models for tumor metastasis. Rational drug design: methods and protocols. Springer; 2012;221–8.
30.
go back to reference Evans JP, Sutton PA, Winiarski K, et al. From mice to men: Murine models of colorectal cancer for use in translational research. Critical Rev Oncol/Hematol. 2016;98:94–105.CrossRef Evans JP, Sutton PA, Winiarski K, et al. From mice to men: Murine models of colorectal cancer for use in translational research. Critical Rev Oncol/Hematol. 2016;98:94–105.CrossRef
31.
go back to reference Rosenberg MM, Yang F, Mohn JL, Storer EK, Jacob MH. The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo. J Neurosci. 2010;30(33):11073–85.PubMedPubMedCentralCrossRef Rosenberg MM, Yang F, Mohn JL, Storer EK, Jacob MH. The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo. J Neurosci. 2010;30(33):11073–85.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang Y, Wang X. Targeting the Wnt/ß-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):1–16.CrossRef Zhang Y, Wang X. Targeting the Wnt/ß-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):1–16.CrossRef
33.
go back to reference Kim A, Kim H-K, Ahn S, Hong YS, Lim S-B, Byeon J-S, et al. Identification of a Novel Splice Variant (c. 423-8A> G) of APC by RNA Sequencing. Ann Lab Med. 2020;40(4):345–7.PubMedPubMedCentralCrossRef Kim A, Kim H-K, Ahn S, Hong YS, Lim S-B, Byeon J-S, et al. Identification of a Novel Splice Variant (c. 423-8A> G) of APC by RNA Sequencing. Ann Lab Med. 2020;40(4):345–7.PubMedPubMedCentralCrossRef
34.
go back to reference Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.PubMedCrossRef Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.PubMedCrossRef
35.
go back to reference Xue Y, Li L, Zhang D, Wu K, Chen Y, Zeng J, et al. Twisted epithelial-to-mesenchymal transition promotes progression of surviving bladder cancer T24 cells with hTERT-dysfunction. PLoS One. 2011;6(11):e27748.PubMedPubMedCentralCrossRef Xue Y, Li L, Zhang D, Wu K, Chen Y, Zeng J, et al. Twisted epithelial-to-mesenchymal transition promotes progression of surviving bladder cancer T24 cells with hTERT-dysfunction. PLoS One. 2011;6(11):e27748.PubMedPubMedCentralCrossRef
36.
go back to reference Zhang D, Bi J, Liang Q, Wang S, Zhang L, Han F, et al. VCAM1 promotes tumor cell invasion and metastasis by inducing EMT and transendothelial migration in colorectal cancer. Front Oncol. 2020;10:1066.PubMedPubMedCentralCrossRef Zhang D, Bi J, Liang Q, Wang S, Zhang L, Han F, et al. VCAM1 promotes tumor cell invasion and metastasis by inducing EMT and transendothelial migration in colorectal cancer. Front Oncol. 2020;10:1066.PubMedPubMedCentralCrossRef
37.
go back to reference Lugli A, Zlobec I, Berger MD, Kirsch R, Nagtegaal ID. Tumour budding in solid cancers. Nat Rev Clin Oncol. 2021;18(2):101–15. Lugli A, Zlobec I, Berger MD, Kirsch R, Nagtegaal ID. Tumour budding in solid cancers. Nat Rev Clin Oncol. 2021;18(2):101–15.
38.
go back to reference Hugen N, Van de Velde C, De Wilt J, Nagtegaal I. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651–7.PubMedPubMedCentralCrossRef Hugen N, Van de Velde C, De Wilt J, Nagtegaal I. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651–7.PubMedPubMedCentralCrossRef
39.
go back to reference Riihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6(1):1–9.CrossRef Riihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6(1):1–9.CrossRef
40.
go back to reference Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. The EMBO journal. Wiley, UK; 2012;31(12):2670–2684. Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. The EMBO journal. Wiley, UK; 2012;31(12):2670–2684.
41.
go back to reference Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25(6):657–63.PubMedCrossRef Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25(6):657–63.PubMedCrossRef
42.
go back to reference Baehs S, Herbst A, Thieme SE, Perschl C, Behrens A, Scheel S, et al. Dickkopf-4 is frequently down-regulated and inhibits growth of colorectal cancer cells. Cancer Lett. 2009;276(2):152–9.PubMedCrossRef Baehs S, Herbst A, Thieme SE, Perschl C, Behrens A, Scheel S, et al. Dickkopf-4 is frequently down-regulated and inhibits growth of colorectal cancer cells. Cancer Lett. 2009;276(2):152–9.PubMedCrossRef
43.
go back to reference Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36(4):417–22.PubMedCrossRef Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36(4):417–22.PubMedCrossRef
44.
go back to reference Voloshanenko O, Erdmann G, Dubash TD, Augustin I, Metzig M, Moffa G, et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun. 2013;4(1):1–13.CrossRef Voloshanenko O, Erdmann G, Dubash TD, Augustin I, Metzig M, Moffa G, et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun. 2013;4(1):1–13.CrossRef
45.
go back to reference Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in ß-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246–61.PubMedPubMedCentralCrossRef Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in ß-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246–61.PubMedPubMedCentralCrossRef
46.
go back to reference Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–35.PubMedCrossRef Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–35.PubMedCrossRef
47.
go back to reference Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803–16.PubMedPubMedCentralCrossRef Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803–16.PubMedPubMedCentralCrossRef
48.
go back to reference Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, et al. Activity-dependent proteolytic cleavage of neuroligin-1. Neuron. 2012;76(2):410–22.PubMedCrossRef Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, et al. Activity-dependent proteolytic cleavage of neuroligin-1. Neuron. 2012;76(2):410–22.PubMedCrossRef
49.
Metadata
Title
The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway
Authors
Margherita Pergolizzi
Laura Bizzozero
Federica Maione
Elena Maldi
Claudio Isella
Marco Macagno
Elisa Mariella
Alberto Bardelli
Enzo Medico
Caterina Marchiò
Guido Serini
Federica Di Nicolantonio
Federico Bussolino
Marco Arese
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2022
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-022-02465-4

Other articles of this Issue 1/2022

Journal of Experimental & Clinical Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine