Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness

Authors: Zhaorui Miao, Qianhua Cao, Ruocen Liao, Xingyu Chen, Xiaoli Li, Longchang Bai, Chenglong Ma, Xinyue Deng, Zhijun Dai, Jun Li, Professor Chenfang Dong

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer because of its aggressive biological characteristics and no effective targeted agents. However, the mechanism underlying its aggressive behavior remain poorly understood. β1,3-N-acetylglucosaminyltransferase V (B3GNT5) overexpression occurs specifically in BLBC. Here, we studied the possible molecular mechanisms of B3GBT5 promoting the aggressiveness of BLBC.

Methods

The potential effects of B3GNT5 on breast cancer cells were tested by colony formation, mammosphere formation, cell proliferation assay, flow cytometry and Western blotting. The glycosylation patterns of B3GNT5 and associated functions were determined by Western blotting, quantitative real-time PCR and flow cytometry. The effect of B3GNT5 expression on BLBC was assessed by in vitro and in vivo tumorigenesis model.

Results

In this study, we showed that B3GNT5 copy number amplification and hypomethylation of B3GNT5 promoter contributed to the overexpression of B3GNT5 in BLBC. Knockout of B3GNT5 strongly reduced surface expression of SSEA-1 and impeded cancer stem cell (CSC)-like properties of BLBC cells. Our results also showed that B3GNT5 protein was heavily N-glycosylated, which is critical for its protein stabilization. Clinically, elevated expression of B3GNT5 was correlated with high grade, large tumor size and poor survival, indicating poor prognosis of breast cancer patients.

Conclusions

Our work uncovers the critical association of B3GNT5 overexpression and glycosylation with enhanced CSCs properties in BLBC. These findings suggest that B3GNT5 has the potential to become a prognostic marker and therapeutic target for BLBC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Togayachi A, Sato T, Narimatsu H. Comprehensive enzymatic characterization of glycosyltransferases with a beta3GT or beta4GT motif. Methods Enzymol. 2006;416:91–102.PubMedCrossRef Togayachi A, Sato T, Narimatsu H. Comprehensive enzymatic characterization of glycosyltransferases with a beta3GT or beta4GT motif. Methods Enzymol. 2006;416:91–102.PubMedCrossRef
2.
go back to reference Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, et al. Molecular cloning and characterization of UDP-GlcNAc: Lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem. 2001;276(25):22032–40.PubMedCrossRef Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, et al. Molecular cloning and characterization of UDP-GlcNAc: Lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem. 2001;276(25):22032–40.PubMedCrossRef
3.
go back to reference Yamamoto M, Boyer AM, Schwarting GA. Fucose-containing glycolipids are stage- and region-specific antigens in developing embryonic brain of rodents. Proc Natl Acad Sci U S A. 1985;82(9):3045–9.PubMedPubMedCentralCrossRef Yamamoto M, Boyer AM, Schwarting GA. Fucose-containing glycolipids are stage- and region-specific antigens in developing embryonic brain of rodents. Proc Natl Acad Sci U S A. 1985;82(9):3045–9.PubMedPubMedCentralCrossRef
4.
go back to reference Biellmann F, Hulsmeier AJ, Zhou D, Cinelli P, Hennet T. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol. 2008;8:109.PubMedPubMedCentralCrossRef Biellmann F, Hulsmeier AJ, Zhou D, Cinelli P, Hennet T. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol. 2008;8:109.PubMedPubMedCentralCrossRef
5.
go back to reference Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol. 2015;5:300.PubMed Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol. 2015;5:300.PubMed
6.
go back to reference Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. P Natl Acad Sci USA. 2013;110(13):4968–73.CrossRef Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. P Natl Acad Sci USA. 2013;110(13):4968–73.CrossRef
7.
go back to reference Wang Z, Wen L, Ma X, Chen Z, Yu Y, Zhu J, et al. High expression of lactotriaosylceramide, a differentiation-associated glycosphingolipid, in the bone marrow of acute myeloid leukemia patients. Glycobiology. 2012;22(7):930–8.PubMedPubMedCentralCrossRef Wang Z, Wen L, Ma X, Chen Z, Yu Y, Zhu J, et al. High expression of lactotriaosylceramide, a differentiation-associated glycosphingolipid, in the bone marrow of acute myeloid leukemia patients. Glycobiology. 2012;22(7):930–8.PubMedPubMedCentralCrossRef
8.
go back to reference Jeong HY, Park SY, Kim HJ, Moon S, Lee S, Lee SH, et al. B3GNT5 is a novel marker correlated with stem-like phenotype and poor clinical outcome in human gliomas. CNS Neurosci Ther. 2020;26(11):1147–54.PubMedPubMedCentralCrossRef Jeong HY, Park SY, Kim HJ, Moon S, Lee S, Lee SH, et al. B3GNT5 is a novel marker correlated with stem-like phenotype and poor clinical outcome in human gliomas. CNS Neurosci Ther. 2020;26(11):1147–54.PubMedPubMedCentralCrossRef
9.
go back to reference Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, et al. The SPPL3-defined glycosphingolipid repertoire orchestrates HLA class I-mediated immune responses. Immunity. 2021;54(2):387.PubMedCrossRef Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, et al. The SPPL3-defined glycosphingolipid repertoire orchestrates HLA class I-mediated immune responses. Immunity. 2021;54(2):387.PubMedCrossRef
10.
go back to reference Kim HM, Koo JS. Immunohistochemical Analysis of Cancer Stem Cell Marker Expression in Papillary Thyroid Cancer. Front Endocrinol (Lausanne). 2019;10:523.CrossRef Kim HM, Koo JS. Immunohistochemical Analysis of Cancer Stem Cell Marker Expression in Papillary Thyroid Cancer. Front Endocrinol (Lausanne). 2019;10:523.CrossRef
11.
go back to reference Cozzolino I, Vitagliano G, Caputo A, Montella M, Franco R, Ciancia G, et al. CD15, CD30, and PAX5 evaluation in Hodgkin’s lymphoma on fine-needle aspiration cytology samples. Diagn Cytopathol. 2020;48(3):211–6.PubMedCrossRef Cozzolino I, Vitagliano G, Caputo A, Montella M, Franco R, Ciancia G, et al. CD15, CD30, and PAX5 evaluation in Hodgkin’s lymphoma on fine-needle aspiration cytology samples. Diagn Cytopathol. 2020;48(3):211–6.PubMedCrossRef
12.
go back to reference Son MJ, Woolard K, Nam DH, Lee J, Fine HA. SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell. 2009;4(5):440–52.PubMedPubMedCentralCrossRef Son MJ, Woolard K, Nam DH, Lee J, Fine HA. SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell. 2009;4(5):440–52.PubMedPubMedCentralCrossRef
13.
go back to reference Hermann PC, Huber SL, Heeschen C. Metastatic cancer stem cells: a new target for anti-cancer therapy? Cell Cycle. 2008;7(2):188–93.PubMedCrossRef Hermann PC, Huber SL, Heeschen C. Metastatic cancer stem cells: a new target for anti-cancer therapy? Cell Cycle. 2008;7(2):188–93.PubMedCrossRef
14.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef
15.
go back to reference Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, et al. Combined Targeted Treatment to Eliminate Tumorigenic Cancer Stem Cells in Human Pancreatic Cancer. Gastroenterology. 2009;137(3):1102–13.PubMedCrossRef Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, et al. Combined Targeted Treatment to Eliminate Tumorigenic Cancer Stem Cells in Human Pancreatic Cancer. Gastroenterology. 2009;137(3):1102–13.PubMedCrossRef
16.
go back to reference Yin ZQ, Liu JJ, Xu YC, Yu J, Ding GH, Yang F, et al. A 41-gene signature derived from breast cancer stem cells as a predictor of survival. J Exp Clin Canc Res. 2014;33(1):49. Yin ZQ, Liu JJ, Xu YC, Yu J, Ding GH, Yang F, et al. A 41-gene signature derived from breast cancer stem cells as a predictor of survival. J Exp Clin Canc Res. 2014;33(1):49.
17.
go back to reference Read TA, Fogarty MP, Markant SL, McLendon RE, Wei ZZ, Ellison DW, et al. Identification of CD15 as a Marker for Tumor-Propagating Cells in a Mouse Model of Medulloblastoma (vol 15, pg 135, 2009). Cancer Cell. 2009;16(3):267-. Read TA, Fogarty MP, Markant SL, McLendon RE, Wei ZZ, Ellison DW, et al. Identification of CD15 as a Marker for Tumor-Propagating Cells in a Mouse Model of Medulloblastoma (vol 15, pg 135, 2009). Cancer Cell. 2009;16(3):267-.
18.
19.
go back to reference Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10(3):R52. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10(3):R52.
20.
go back to reference Cao QH, Chen XY, Wu XB, Liao RC, Huang PP, Tan YJ, et al. Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-alpha V beta 5 axis. J Exp Med. 2018;215(6):1679–92.PubMedPubMedCentralCrossRef Cao QH, Chen XY, Wu XB, Liao RC, Huang PP, Tan YJ, et al. Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-alpha V beta 5 axis. J Exp Med. 2018;215(6):1679–92.PubMedPubMedCentralCrossRef
21.
go back to reference Huang PP, Liao RC, Chen XY, Wu XB, Li XL, Wang YF, et al. Nuclear translocation of PLSCR1 activates STAT1 signaling in basal-like breast cancer. Theranostics. 2020;10(10):4644–58.PubMedPubMedCentralCrossRef Huang PP, Liao RC, Chen XY, Wu XB, Li XL, Wang YF, et al. Nuclear translocation of PLSCR1 activates STAT1 signaling in basal-like breast cancer. Theranostics. 2020;10(10):4644–58.PubMedPubMedCentralCrossRef
22.
go back to reference Dong CF, Yuan TT, Wu YD, Wang YF, Fan TWM, Miriyala S, et al. Loss of FBP1 by Snail-Mediated Repression Provides Metabolic Advantages in Basal-like Breast Cancer. Cancer Cell. 2013;23(3):316–31.PubMedPubMedCentralCrossRef Dong CF, Yuan TT, Wu YD, Wang YF, Fan TWM, Miriyala S, et al. Loss of FBP1 by Snail-Mediated Repression Provides Metabolic Advantages in Basal-like Breast Cancer. Cancer Cell. 2013;23(3):316–31.PubMedPubMedCentralCrossRef
23.
go back to reference van de Vijver MJ, He YD, van ‘t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med. 2002;347(25):1999–2009.PubMedCrossRef van de Vijver MJ, He YD, van ‘t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med. 2002;347(25):1999–2009.PubMedCrossRef
24.
go back to reference Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for Invasive Breast Cancer. Jama-J Am Med Assoc. 2011;305(18):1873–81.CrossRef Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for Invasive Breast Cancer. Jama-J Am Med Assoc. 2011;305(18):1873–81.CrossRef
25.
go back to reference Desmedt C, Piette F, Loi S, Wang YX, d’assignies MS, Bergh J, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res. 2007;13(11):3207–14.PubMedCrossRef Desmedt C, Piette F, Loi S, Wang YX, d’assignies MS, Bergh J, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res. 2007;13(11):3207–14.PubMedCrossRef
26.
go back to reference Wu XB, Li XL, Fu Q, Cao QH, Chen XY, Wang MJ, et al. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J Exp Med. 2017;214(4):1065–79.PubMedPubMedCentralCrossRef Wu XB, Li XL, Fu Q, Cao QH, Chen XY, Wang MJ, et al. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J Exp Med. 2017;214(4):1065–79.PubMedPubMedCentralCrossRef
27.
go back to reference Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. P Natl Acad Sci USA. 2012;109(8):2724–9.CrossRef Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. P Natl Acad Sci USA. 2012;109(8):2724–9.CrossRef
28.
go back to reference Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-Like Breast Cancer Models. Clin Cancer Res. 2009;15(14):4649–64.PubMedCrossRef Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-Like Breast Cancer Models. Clin Cancer Res. 2009;15(14):4649–64.PubMedCrossRef
29.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.PubMedPubMedCentralCrossRef Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.PubMedPubMedCentralCrossRef
30.
go back to reference Riaz M, Elstrodt F, Hollestelle A, Dehghan A, Klijn JGM, Schutte M. Low-risk susceptibility alleles in 40 human breast cancer cell lines. Bmc Cancer. 2009;9:236.PubMedPubMedCentralCrossRef Riaz M, Elstrodt F, Hollestelle A, Dehghan A, Klijn JGM, Schutte M. Low-risk susceptibility alleles in 40 human breast cancer cell lines. Bmc Cancer. 2009;9:236.PubMedPubMedCentralCrossRef
31.
go back to reference Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia. 2021;23(8):743–53.PubMedPubMedCentralCrossRef Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia. 2021;23(8):743–53.PubMedPubMedCentralCrossRef
33.
go back to reference Koh YW, Lee HJ, Ahn JH, Lee JW, Gong G. Expression of Lewis X Is Associated With Poor Prognosis in Triple-Negative Breast Cancer. Am J Clin Pathol. 2013;139(6):746–53.PubMedCrossRef Koh YW, Lee HJ, Ahn JH, Lee JW, Gong G. Expression of Lewis X Is Associated With Poor Prognosis in Triple-Negative Breast Cancer. Am J Clin Pathol. 2013;139(6):746–53.PubMedCrossRef
34.
go back to reference Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, et al. Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44(hi/)CD24(lo/-) Stem Cell Phenotype in Human Breast Cancer. J Mammary Gland Biol. 2010;15(2):235–52.CrossRef Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, et al. Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44(hi/)CD24(lo/-) Stem Cell Phenotype in Human Breast Cancer. J Mammary Gland Biol. 2010;15(2):235–52.CrossRef
35.
go back to reference Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li QY, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Tr. 2010;123(3):725–31.CrossRef Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li QY, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Tr. 2010;123(3):725–31.CrossRef
36.
go back to reference Lim SO, Li CW, Hung MC. Lim SO, Li CW, Hung MC. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Res. 2018;78(13):187–201. Lim SO, Li CW, Hung MC. Lim SO, Li CW, Hung MC. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Res. 2018;78(13):187–201.
37.
go back to reference Concolino P, Rizza R, Mignone F, Costella A, Guarino D, Carboni I, et al. A comprehensive BRCA1/2 NGS pipeline for an immediate Copy Number Variation (CNV) detection in breast and ovarian cancer molecular diagnosis. Clin Chim Acta. 2018;480:173–9.PubMedCrossRef Concolino P, Rizza R, Mignone F, Costella A, Guarino D, Carboni I, et al. A comprehensive BRCA1/2 NGS pipeline for an immediate Copy Number Variation (CNV) detection in breast and ovarian cancer molecular diagnosis. Clin Chim Acta. 2018;480:173–9.PubMedCrossRef
38.
go back to reference Pan XY, Hu XH, Zhang YH, Chen L, Zhu LC, Wan SB, et al. Identification of the copy number variant biomarkers for breast cancer subtypes. Mol Genet Genomics. 2019;294(1):95–110.PubMedCrossRef Pan XY, Hu XH, Zhang YH, Chen L, Zhu LC, Wan SB, et al. Identification of the copy number variant biomarkers for breast cancer subtypes. Mol Genet Genomics. 2019;294(1):95–110.PubMedCrossRef
39.
go back to reference Skvortsova K, Masle-Farquhar E, Luu PL, Song JZ, Qu WJ, Zotenko E, et al. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell. 2019;35(2):297-+.PubMedCrossRef Skvortsova K, Masle-Farquhar E, Luu PL, Song JZ, Qu WJ, Zotenko E, et al. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell. 2019;35(2):297-+.PubMedCrossRef
40.
go back to reference Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455-.PubMedCrossRef Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455-.PubMedCrossRef
41.
go back to reference Laird PW, Jacksongrusby L, Fazeli A, Dickinson SL, Jung WE, Li E, et al. Suppression of Intestinal Neoplasia by DNA Hypomethylation Cell. 1995;81(2):197–205.PubMed Laird PW, Jacksongrusby L, Fazeli A, Dickinson SL, Jung WE, Li E, et al. Suppression of Intestinal Neoplasia by DNA Hypomethylation Cell. 1995;81(2):197–205.PubMed
42.
go back to reference Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fie MI, et al. UHRF1 Overexpression Drives DNA Hypomethylation and Hepatocellular Carcinoma. Cancer Cell. 2014;25(2):196–209.PubMedPubMedCentralCrossRef Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fie MI, et al. UHRF1 Overexpression Drives DNA Hypomethylation and Hepatocellular Carcinoma. Cancer Cell. 2014;25(2):196–209.PubMedPubMedCentralCrossRef
43.
go back to reference Wang J, Tian GG, Li XY, Sun YY, Cheng L, Li YF, et al. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol. 2020;8:555. Wang J, Tian GG, Li XY, Sun YY, Cheng L, Li YF, et al. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol. 2020;8:555.
44.
go back to reference Laitinen L, Virtanen I, Saxen L. Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J Histochem Cytochem. 1987;35(1):55–65.PubMedCrossRef Laitinen L, Virtanen I, Saxen L. Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J Histochem Cytochem. 1987;35(1):55–65.PubMedCrossRef
45.
go back to reference Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67.PubMedCrossRef Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67.PubMedCrossRef
46.
go back to reference Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.PubMedCrossRef Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.PubMedCrossRef
47.
go back to reference Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell. 2019;36(1):6–16.PubMedCrossRef Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell. 2019;36(1):6–16.PubMedCrossRef
48.
go back to reference Shirahama T, Ikoma M, Muramatsu T, Ohi Y. Expression of Ssea-1 Carbohydrate Antigen Correlates with Stage, Grade and Metastatic Potential of Transitional Cell-Carcinoma of the Bladder. J Urol. 1992;148(4):1319–22.PubMedCrossRef Shirahama T, Ikoma M, Muramatsu T, Ohi Y. Expression of Ssea-1 Carbohydrate Antigen Correlates with Stage, Grade and Metastatic Potential of Transitional Cell-Carcinoma of the Bladder. J Urol. 1992;148(4):1319–22.PubMedCrossRef
49.
go back to reference Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009;3(5–6):469–82.PubMedPubMedCentralCrossRef Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009;3(5–6):469–82.PubMedPubMedCentralCrossRef
50.
go back to reference Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, et al. Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics. Cancer Res. 2009;69(10):4116–24.PubMedPubMedCentralCrossRef Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, et al. Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics. Cancer Res. 2009;69(10):4116–24.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Feng YL, Mouti MA, Pauklin S. PAF1 Regulates the Stemness of Pancreatic Cancer Stem Cells. Gastroenterology. 2021;160(6):2224–5.PubMedCrossRef Feng YL, Mouti MA, Pauklin S. PAF1 Regulates the Stemness of Pancreatic Cancer Stem Cells. Gastroenterology. 2021;160(6):2224–5.PubMedCrossRef
53.
go back to reference Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol. 2018;53:265–81.PubMedCrossRef Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol. 2018;53:265–81.PubMedCrossRef
54.
go back to reference Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell. 2018;33(2):187.PubMedPubMedCentralCrossRef Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell. 2018;33(2):187.PubMedPubMedCentralCrossRef
55.
go back to reference Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.PubMedCrossRef Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.PubMedCrossRef
Metadata
Title
Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness
Authors
Zhaorui Miao
Qianhua Cao
Ruocen Liao
Xingyu Chen
Xiaoli Li
Longchang Bai
Chenglong Ma
Xinyue Deng
Zhijun Dai
Jun Li
Professor Chenfang Dong
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2022
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-022-02375-5

Other articles of this Issue 1/2022

Journal of Experimental & Clinical Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine