Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2022

Open Access 01-12-2022 | Review

Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies

Authors: Nisha Kumari, Seung Hong Choi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2022

Login to get access

Abstract

Cancer immunotherapy has emerged as a novel cancer treatment, although recent immunotherapy trials have produced suboptimal outcomes, with durable responses seen only in a small number of patients. The tumor microenvironment (TME) has been shown to be responsible for tumor immune escape and therapy failure. The vital component of the TME is tumor-associated macrophages (TAMs), which are usually associated with poor prognosis and drug resistance, including immunotherapies, and have emerged as promising targets for cancer immunotherapy. Recently, nanoparticles, because of their unique physicochemical characteristics, have emerged as crucial translational moieties in tackling tumor-promoting TAMs that amplify immune responses and sensitize tumors to immunotherapies in a safe and effective manner. In this review, we mainly described the current potential nanomaterial-based therapeutic strategies that target TAMs, including restricting TAMs survival, inhibiting TAMs recruitment to tumors and functionally repolarizing tumor-supportive TAMs to antitumor type. The current understanding of the origin and polarization of TAMs, their crucial role in cancer progression and prognostic significance was also discussed in this review. We also highlighted the recent evolution of chimeric antigen receptor (CAR)-macrophage cell therapy.
Literature
1.
go back to reference Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70:86–104.PubMedCrossRef Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70:86–104.PubMedCrossRef
3.
go back to reference Nam J, Son S, Park KS, Zou WP, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4:398–414.CrossRef Nam J, Son S, Park KS, Zou WP, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4:398–414.CrossRef
4.
go back to reference Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17:887–904.PubMedCrossRef Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17:887–904.PubMedCrossRef
7.
go back to reference Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Dev Funct Myeloid Subsets. 2013;120:163–84.CrossRef Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Dev Funct Myeloid Subsets. 2013;120:163–84.CrossRef
8.
go back to reference Mantovani A, Ponzetta A, Inforzato A, Jaillon S. Innate immunity, inflammation and tumour progression: double-edged swords. J Intern Med. 2019;285:524–32.PubMedPubMedCentralCrossRef Mantovani A, Ponzetta A, Inforzato A, Jaillon S. Innate immunity, inflammation and tumour progression: double-edged swords. J Intern Med. 2019;285:524–32.PubMedPubMedCentralCrossRef
10.
go back to reference Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.PubMedPubMedCentralCrossRef Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.PubMedPubMedCentralCrossRef
12.
go back to reference Kitano Y, Okabe H, Yamashita Y, Nakagawa S, Saito Y, Umezaki N, et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer. 2018;118:171–80.PubMedCrossRef Kitano Y, Okabe H, Yamashita Y, Nakagawa S, Saito Y, Umezaki N, et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer. 2018;118:171–80.PubMedCrossRef
13.
go back to reference Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint Cancer therapy. Cell. 2018;175:1014.PubMedPubMedCentralCrossRef Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint Cancer therapy. Cell. 2018;175:1014.PubMedPubMedCentralCrossRef
14.
go back to reference Molgora M, Esaulova E, Vermi W, Hou JC, Chen Y, Luo JQ, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 2020;182:886.PubMedPubMedCentralCrossRef Molgora M, Esaulova E, Vermi W, Hou JC, Chen Y, Luo JQ, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 2020;182:886.PubMedPubMedCentralCrossRef
15.
go back to reference Xiong HZ, Mittman S, Rodriguez R, Moskalenko M, Pacheco-Sanchez P, Yang YG, et al. Anti-PD-L1 treatment results in functional remodeling of the macrophage compartment. Cancer Res. 2019;79:1493–506.PubMedCrossRef Xiong HZ, Mittman S, Rodriguez R, Moskalenko M, Pacheco-Sanchez P, Yang YG, et al. Anti-PD-L1 treatment results in functional remodeling of the macrophage compartment. Cancer Res. 2019;79:1493–506.PubMedCrossRef
16.
17.
go back to reference Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem. 2008;391:2469–95.PubMedCrossRef Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem. 2008;391:2469–95.PubMedCrossRef
18.
go back to reference Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.PubMedCrossRef Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.PubMedCrossRef
19.
go back to reference Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P. Positron emitting magnetic Nanoconstructs for PET/MR imaging. Small. 2014;10:2688–96.PubMedCrossRef Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P. Positron emitting magnetic Nanoconstructs for PET/MR imaging. Small. 2014;10:2688–96.PubMedCrossRef
20.
go back to reference Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.PubMedPubMedCentralCrossRef Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.PubMedPubMedCentralCrossRef
21.
go back to reference Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol. 2021;69:349–64.PubMedCrossRef Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol. 2021;69:349–64.PubMedCrossRef
22.
go back to reference Raju GSR, Benton L, Pavitraa E, Yu JS. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem Commun. 2015;51:13248–59.CrossRef Raju GSR, Benton L, Pavitraa E, Yu JS. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem Commun. 2015;51:13248–59.CrossRef
23.
go back to reference Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.PubMedCrossRef Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.PubMedCrossRef
24.
go back to reference Zhao ZW, Zheng LY, Chen WQ, Weng W, Song JJ, Ji JS. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol. 2019;12:126.PubMedPubMedCentralCrossRef Zhao ZW, Zheng LY, Chen WQ, Weng W, Song JJ, Ji JS. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol. 2019;12:126.PubMedPubMedCentralCrossRef
25.
go back to reference Sylvestre M, Crane CA, Pun SH. Progress on modulating tumor-associated macrophages with biomaterials. Adv Mater. 2020;32:e1902007.PubMedCrossRef Sylvestre M, Crane CA, Pun SH. Progress on modulating tumor-associated macrophages with biomaterials. Adv Mater. 2020;32:e1902007.PubMedCrossRef
26.
go back to reference Ovais M, Guo MY, Chen CY. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31:e1808303.PubMedCrossRef Ovais M, Guo MY, Chen CY. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31:e1808303.PubMedCrossRef
27.
go back to reference Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94.PubMedPubMedCentralCrossRef Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94.PubMedPubMedCentralCrossRef
28.
go back to reference Zhang Y, Chen YL, Li JH, Zhu XQ, Liu YJ, Wang XX, et al. Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages. ACS Appl Mater Interfaces. 2021;13:24442–52.PubMedCrossRef Zhang Y, Chen YL, Li JH, Zhu XQ, Liu YJ, Wang XX, et al. Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages. ACS Appl Mater Interfaces. 2021;13:24442–52.PubMedCrossRef
29.
go back to reference Miller MA, Zheng YR, Suresh GW, Pfirschke C, Zope H, Engblom C, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6:8692.PubMedPubMedCentralCrossRef Miller MA, Zheng YR, Suresh GW, Pfirschke C, Zope H, Engblom C, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6:8692.PubMedPubMedCentralCrossRef
32.
go back to reference Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012;109:2491–6.PubMedPubMedCentralCrossRef Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012;109:2491–6.PubMedPubMedCentralCrossRef
33.
go back to reference Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.PubMedCrossRef Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.PubMedCrossRef
35.
go back to reference Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatr Res. 2021;90:513–23.PubMedCrossRef Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatr Res. 2021;90:513–23.PubMedCrossRef
36.
go back to reference Hoeffel G, Chen JM, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) Erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42:665–78.PubMedPubMedCentralCrossRef Hoeffel G, Chen JM, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) Erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42:665–78.PubMedPubMedCentralCrossRef
37.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.PubMedPubMedCentralCrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.PubMedPubMedCentralCrossRef
38.
go back to reference Gibbings SL, Goyal R, Desch AN, Leach SM, Prabagar M, Atif SM, et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood. 2015;126:1357–66.PubMedPubMedCentralCrossRef Gibbings SL, Goyal R, Desch AN, Leach SM, Prabagar M, Atif SM, et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood. 2015;126:1357–66.PubMedPubMedCentralCrossRef
39.
go back to reference Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng ZH, et al. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med. 2018;215:2536–53.PubMedPubMedCentralCrossRef Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng ZH, et al. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med. 2018;215:2536–53.PubMedPubMedCentralCrossRef
40.
go back to reference Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017;47:323.PubMedPubMedCentralCrossRef Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017;47:323.PubMedPubMedCentralCrossRef
41.
go back to reference Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2:e26968.PubMedPubMedCentralCrossRef Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2:e26968.PubMedPubMedCentralCrossRef
42.
go back to reference Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 2021;595:578.PubMedCrossRef Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 2021;595:578.PubMedCrossRef
43.
go back to reference Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med. 2020;217:e20191869.PubMedPubMedCentralCrossRef Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med. 2020;217:e20191869.PubMedPubMedCentralCrossRef
44.
go back to reference Krishnan V, Schaar B, Tallapragada S, Dorigo O. Tumor associated macrophages in gynecologic cancers. Gynecol Oncol. 2018;149:205–13.PubMedCrossRef Krishnan V, Schaar B, Tallapragada S, Dorigo O. Tumor associated macrophages in gynecologic cancers. Gynecol Oncol. 2018;149:205–13.PubMedCrossRef
46.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.PubMedCrossRef Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.PubMedCrossRef
47.
go back to reference Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30:36–50.PubMedCrossRef Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30:36–50.PubMedCrossRef
48.
go back to reference Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in Cancer. Trends Immunol. 2019;40:310–27.PubMedCrossRef Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in Cancer. Trends Immunol. 2019;40:310–27.PubMedCrossRef
49.
go back to reference Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W, et al. Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis. Gynecol Oncol. 2017;147:181–7.PubMedCrossRef Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W, et al. Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis. Gynecol Oncol. 2017;147:181–7.PubMedCrossRef
50.
go back to reference Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F, et al. Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget. 2017;8:30576–86.PubMedPubMedCentralCrossRef Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F, et al. Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget. 2017;8:30576–86.PubMedPubMedCentralCrossRef
51.
go back to reference Yang Z, Zhang M, Peng R, Liu J, Wang F, Li Y, et al. The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Color Dis. 2020;35:1651–61.CrossRef Yang Z, Zhang M, Peng R, Liu J, Wang F, Li Y, et al. The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Color Dis. 2020;35:1651–61.CrossRef
52.
go back to reference Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignancies. Pathol Int. 2015;65:170–6.PubMedCrossRef Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignancies. Pathol Int. 2015;65:170–6.PubMedCrossRef
53.
go back to reference Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105:1–8.PubMedCrossRef Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105:1–8.PubMedCrossRef
54.
go back to reference Wang J, Li DY, Cang HX, Guo B. Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 2019;8:4709–21.PubMedPubMedCentralCrossRef Wang J, Li DY, Cang HX, Guo B. Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 2019;8:4709–21.PubMedPubMedCentralCrossRef
55.
go back to reference Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal Cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 2019;35:588–602 e510.PubMedPubMedCentralCrossRef Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal Cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 2019;35:588–602 e510.PubMedPubMedCentralCrossRef
56.
go back to reference Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer. 2014;135:843–61.PubMedCrossRef Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer. 2014;135:843–61.PubMedCrossRef
57.
go back to reference Debebe A, Medina V, Chen CY, Mahajan IM, Jia C, Fu D, et al. Wnt/beta-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene. 2017;36:6020–9.PubMedPubMedCentralCrossRef Debebe A, Medina V, Chen CY, Mahajan IM, Jia C, Fu D, et al. Wnt/beta-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene. 2017;36:6020–9.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef
60.
go back to reference Xia LL, Zhu XH, Zhang L, Xu YH, Chen GP, Luo J. EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer. Biotechnol Appl Biochem. 2020;67(6):1011–101.PubMedPubMedCentralCrossRef Xia LL, Zhu XH, Zhang L, Xu YH, Chen GP, Luo J. EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer. Biotechnol Appl Biochem. 2020;67(6):1011–101.PubMedPubMedCentralCrossRef
61.
go back to reference Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.PubMedCrossRef Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.PubMedCrossRef
62.
go back to reference Bosurgi L, Cao YG, Cabeza-Cabrerizo M, Tucci A, Hughes LD, Kong Y, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072.PubMedPubMedCentralCrossRef Bosurgi L, Cao YG, Cabeza-Cabrerizo M, Tucci A, Hughes LD, Kong Y, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072.PubMedPubMedCentralCrossRef
63.
go back to reference Viallard C, Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.PubMedCrossRef Viallard C, Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.PubMedCrossRef
64.
go back to reference Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24:241–55.PubMedPubMedCentralCrossRef Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24:241–55.PubMedPubMedCentralCrossRef
65.
go back to reference Wang W, Liu Y, Guo J, He H, Mi X, Chen C, et al. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis. 2018;7:97.PubMedPubMedCentralCrossRef Wang W, Liu Y, Guo J, He H, Mi X, Chen C, et al. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis. 2018;7:97.PubMedPubMedCentralCrossRef
66.
go back to reference Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis. 2020;11:234.PubMedPubMedCentralCrossRef Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis. 2020;11:234.PubMedPubMedCentralCrossRef
67.
go back to reference Liu W, Wang WJ, Wang XR, Xu C, Zhang N, Di W. Cisplatin-stimulated macrophages promote ovarian cancer migration via the CCL20-CCR6 axis. Cancer Lett. 2020;472:59–69.PubMedCrossRef Liu W, Wang WJ, Wang XR, Xu C, Zhang N, Di W. Cisplatin-stimulated macrophages promote ovarian cancer migration via the CCL20-CCR6 axis. Cancer Lett. 2020;472:59–69.PubMedCrossRef
68.
go back to reference Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, et al. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 2020;18:51.PubMedPubMedCentralCrossRef Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, et al. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 2020;18:51.PubMedPubMedCentralCrossRef
69.
go back to reference Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59.PubMedPubMedCentralCrossRef Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59.PubMedPubMedCentralCrossRef
70.
go back to reference Qian BZ, Zhang H, Li JF, He TF, Yeo EJ, Soong DYH, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212:1433–48.PubMedPubMedCentralCrossRef Qian BZ, Zhang H, Li JF, He TF, Yeo EJ, Soong DYH, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212:1433–48.PubMedPubMedCentralCrossRef
71.
go back to reference Wu JD, Gao W, Tang QY, Yu Y, You W, Wu ZS, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring alpha(M)beta(2) integrin to tumor cells. Hepatology. 2021;73:1365–80.PubMedCrossRef Wu JD, Gao W, Tang QY, Yu Y, You W, Wu ZS, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring alpha(M)beta(2) integrin to tumor cells. Hepatology. 2021;73:1365–80.PubMedCrossRef
72.
go back to reference Chen Q, Zhang XHF, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast Cancer cells that invade the lungs. Cancer Cell. 2011;20:538–49.PubMedPubMedCentralCrossRef Chen Q, Zhang XHF, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast Cancer cells that invade the lungs. Cancer Cell. 2011;20:538–49.PubMedPubMedCentralCrossRef
73.
go back to reference Banerjee P, Zhang R, Ivan C, Galletti G, Clise-Dwyer K, Barbaglio F, et al. Trabectedin reveals a strategy of immunomodulation in chronic lymphocytic leukemia. Cancer Immunol Res. 2019;7:2036–51.PubMedPubMedCentralCrossRef Banerjee P, Zhang R, Ivan C, Galletti G, Clise-Dwyer K, Barbaglio F, et al. Trabectedin reveals a strategy of immunomodulation in chronic lymphocytic leukemia. Cancer Immunol Res. 2019;7:2036–51.PubMedPubMedCentralCrossRef
74.
go back to reference Yin Z, Ma TT, Huang BW, Lin LH, Zhou Y, Yan JH, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-beta signaling pathway. J Exp Clin Cancer Res. 2019;38:310.PubMedPubMedCentralCrossRef Yin Z, Ma TT, Huang BW, Lin LH, Zhou Y, Yan JH, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-beta signaling pathway. J Exp Clin Cancer Res. 2019;38:310.PubMedPubMedCentralCrossRef
75.
go back to reference Klimp AH, Hollema H, Kempinga C, van der Zee AGJ, de Vries EGE, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res. 2001;61:7305–9.PubMed Klimp AH, Hollema H, Kempinga C, van der Zee AGJ, de Vries EGE, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res. 2001;61:7305–9.PubMed
76.
go back to reference Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.PubMedPubMedCentralCrossRef Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.PubMedPubMedCentralCrossRef
77.
go back to reference Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.PubMedPubMedCentralCrossRef Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.PubMedPubMedCentralCrossRef
78.
go back to reference Beury DW, Parker KH, Nyandjo M, Sinha P, Carter KA, Ostrand-Rosenberg S. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukoc Biol. 2014;96:1109–18.PubMedPubMedCentralCrossRef Beury DW, Parker KH, Nyandjo M, Sinha P, Carter KA, Ostrand-Rosenberg S. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukoc Biol. 2014;96:1109–18.PubMedPubMedCentralCrossRef
79.
go back to reference Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, et al. Distinct populations of immune-suppressive macrophages differentiate from Monocytic myeloid-derived suppressor cells in Cancer. Cell Rep. 2020;33:108571.PubMedPubMedCentralCrossRef Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, et al. Distinct populations of immune-suppressive macrophages differentiate from Monocytic myeloid-derived suppressor cells in Cancer. Cell Rep. 2020;33:108571.PubMedPubMedCentralCrossRef
80.
go back to reference Kumar V, Cheng PY, Condamine T, Mony S, Languino LR, McCaffrey JC, et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 2016;44:303–15.PubMedPubMedCentralCrossRef Kumar V, Cheng PY, Condamine T, Mony S, Languino LR, McCaffrey JC, et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 2016;44:303–15.PubMedPubMedCentralCrossRef
82.
go back to reference Majety M, Runza V, Lehmann C, Hoves S, Ries CH. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J. 2018;285:763–76.PubMedCrossRef Majety M, Runza V, Lehmann C, Hoves S, Ries CH. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J. 2018;285:763–76.PubMedCrossRef
83.
go back to reference La Fleur L, Boura VF, Alexeyenko A, Berglund A, Ponten V, Mattsson JSM, et al. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer. 2018;143:1741–52.PubMedCrossRef La Fleur L, Boura VF, Alexeyenko A, Berglund A, Ponten V, Mattsson JSM, et al. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer. 2018;143:1741–52.PubMedCrossRef
84.
go back to reference Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRP alpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32(32):25–50.PubMedCrossRef Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRP alpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32(32):25–50.PubMedCrossRef
85.
go back to reference Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543:428.PubMedPubMedCentralCrossRef Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543:428.PubMedPubMedCentralCrossRef
86.
go back to reference Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.PubMedCrossRef Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.PubMedCrossRef
87.
go back to reference D'Errico G, Alonso-Nocelo M, Vallespinos M, Hermann PC, Alcala S, Garcia CP, et al. Tumor-associated macrophage-secreted 14-3-3 zeta signals via AXL to promote pancreatic cancer chemoresistance. Oncogene. 2019;38:5469–85.PubMedCrossRef D'Errico G, Alonso-Nocelo M, Vallespinos M, Hermann PC, Alcala S, Garcia CP, et al. Tumor-associated macrophage-secreted 14-3-3 zeta signals via AXL to promote pancreatic cancer chemoresistance. Oncogene. 2019;38:5469–85.PubMedCrossRef
88.
go back to reference Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth SJ, et al. Compensation between CSF1R(+) macrophages and Foxp3(+) Treg cells drives resistance to tumor immunotherapy. JCI Insight. 2018;3:e120631.PubMedCentralCrossRef Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth SJ, et al. Compensation between CSF1R(+) macrophages and Foxp3(+) Treg cells drives resistance to tumor immunotherapy. JCI Insight. 2018;3:e120631.PubMedCentralCrossRef
89.
go back to reference Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–32.PubMedCrossRef Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–32.PubMedCrossRef
90.
go back to reference Wu QC, Zhou WH, Yin SY, Zhou Y, Chen TC, Qian JJ, et al. Blocking triggering receptor expressed on myeloid Cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver Cancer. Hepatology. 2019;70:198–214.PubMedCrossRef Wu QC, Zhou WH, Yin SY, Zhou Y, Chen TC, Qian JJ, et al. Blocking triggering receptor expressed on myeloid Cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver Cancer. Hepatology. 2019;70:198–214.PubMedCrossRef
91.
go back to reference Sun ZR, Du CC, Xu PB, Miao CH. Surgical trauma-induced CCL18 promotes recruitment of regulatory T cells and colon cancer progression. J Cell Physiol. 2019;234:4608–16.PubMedCrossRef Sun ZR, Du CC, Xu PB, Miao CH. Surgical trauma-induced CCL18 promotes recruitment of regulatory T cells and colon cancer progression. J Cell Physiol. 2019;234:4608–16.PubMedCrossRef
92.
go back to reference Jing WQ, Guo X, Wang GY, Bi YX, Han LH, Zhu QF, et al. Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 2020;78:106012.PubMedCrossRef Jing WQ, Guo X, Wang GY, Bi YX, Han LH, Zhu QF, et al. Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 2020;78:106012.PubMedCrossRef
93.
go back to reference Fan CS, Chen LL, Hsu TA, Chen CC, Chua KV, Li CP, et al. Endothelial-mesenchymal transition harnesses HSP90 alpha-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol. 2019;12:138.PubMedPubMedCentralCrossRef Fan CS, Chen LL, Hsu TA, Chen CC, Chua KV, Li CP, et al. Endothelial-mesenchymal transition harnesses HSP90 alpha-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol. 2019;12:138.PubMedPubMedCentralCrossRef
94.
go back to reference Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392.PubMedPubMedCentralCrossRef Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392.PubMedPubMedCentralCrossRef
95.
go back to reference Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19:76.PubMedCrossRef Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19:76.PubMedCrossRef
96.
go back to reference Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol. 2018;18:5–18.PubMedCrossRef Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol. 2018;18:5–18.PubMedCrossRef
97.
go back to reference Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006;66:4349–56.PubMedCrossRef Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006;66:4349–56.PubMedCrossRef
98.
go back to reference Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic Cancer. Cell Metab. 2019;29:1390.PubMedPubMedCentralCrossRef Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic Cancer. Cell Metab. 2019;29:1390.PubMedPubMedCentralCrossRef
99.
go back to reference Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, et al. Depletion of macrophages improves therapeutic response to gemcitabine in murine pancreas Cancer. Cancers. 2020;12:1978.PubMedCentralCrossRef Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, et al. Depletion of macrophages improves therapeutic response to gemcitabine in murine pancreas Cancer. Cancers. 2020;12:1978.PubMedCentralCrossRef
100.
go back to reference Dong XL, Sun RM, Wang J, Yu SZ, Cui JQ, Guo Z, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer. Biochem Pharmacol. 2020;182:114289.PubMedCrossRef Dong XL, Sun RM, Wang J, Yu SZ, Cui JQ, Guo Z, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer. Biochem Pharmacol. 2020;182:114289.PubMedCrossRef
101.
go back to reference Kuwada K, Kagawa S, Yoshida R, Sakamoto S, Ito A, Watanabe M, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37:307.PubMedPubMedCentralCrossRef Kuwada K, Kagawa S, Yoshida R, Sakamoto S, Ito A, Watanabe M, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37:307.PubMedPubMedCentralCrossRef
102.
go back to reference Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H. Epithelial to mesenchymal transition: a mechanism that fuels Cancer radio/Chemoresistance. Cells. 2020;9:428.PubMedCentralCrossRef Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H. Epithelial to mesenchymal transition: a mechanism that fuels Cancer radio/Chemoresistance. Cells. 2020;9:428.PubMedCentralCrossRef
103.
go back to reference Li DB, Ji HF, Niu XJ, Yin L, Wang YR, Gu YC, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Sci. 2020;111:47–58.PubMedCrossRef Li DB, Ji HF, Niu XJ, Yin L, Wang YR, Gu YC, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Sci. 2020;111:47–58.PubMedCrossRef
104.
go back to reference Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 2019;79:795–806.PubMedCrossRef Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 2019;79:795–806.PubMedCrossRef
105.
go back to reference Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018;78:5287–99.PubMedCrossRef Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018;78:5287–99.PubMedCrossRef
106.
go back to reference Ma YS, Wu TM, Ling CC, Yu F, Zhang J, Cao PS, et al. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol Ther Oncolytics. 2021;20:484–98.PubMedPubMedCentralCrossRef Ma YS, Wu TM, Ling CC, Yu F, Zhang J, Cao PS, et al. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol Ther Oncolytics. 2021;20:484–98.PubMedPubMedCentralCrossRef
107.
go back to reference Sahraei M, Chaube B, Liu YT, Sun J, Kaplan A, Price NL, et al. Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. J Clin Investig. 2019;129:5518–36.PubMedPubMedCentralCrossRef Sahraei M, Chaube B, Liu YT, Sun J, Kaplan A, Price NL, et al. Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. J Clin Investig. 2019;129:5518–36.PubMedPubMedCentralCrossRef
108.
go back to reference Nowak M, Klink M. The role of tumor-associated macrophages in the progression and Chemoresistance of ovarian Cancer. Cells. 2020;9:1299.PubMedCentralCrossRef Nowak M, Klink M. The role of tumor-associated macrophages in the progression and Chemoresistance of ovarian Cancer. Cells. 2020;9:1299.PubMedCentralCrossRef
109.
go back to reference Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a Meta-analysis of the literature. PLoS One. 2012;7:e50946.PubMedPubMedCentralCrossRef Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a Meta-analysis of the literature. PLoS One. 2012;7:e50946.PubMedPubMedCentralCrossRef
110.
go back to reference Ding W, Tan YL, Qian Y, Xue WB, Wang YB, Jiang P, et al. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: a meta-analysis. PLoS One. 2019;14:e0223971.PubMedPubMedCentralCrossRef Ding W, Tan YL, Qian Y, Xue WB, Wang YB, Jiang P, et al. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: a meta-analysis. PLoS One. 2019;14:e0223971.PubMedPubMedCentralCrossRef
111.
go back to reference Mei JD, Xiao ZL, Guo CL, Pu Q, Ma L, Liu CW, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget. 2016;7:34217–28.PubMedPubMedCentralCrossRef Mei JD, Xiao ZL, Guo CL, Pu Q, Ma L, Liu CW, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget. 2016;7:34217–28.PubMedPubMedCentralCrossRef
112.
go back to reference Kumar AT, Knops A, Swendseid B, Martinez-Outschoom U, Harshyne L, Philp N, et al. Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a Meta-analysis. Front Oncol. 2019;9:656.PubMedPubMedCentralCrossRef Kumar AT, Knops A, Swendseid B, Martinez-Outschoom U, Harshyne L, Philp N, et al. Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a Meta-analysis. Front Oncol. 2019;9:656.PubMedPubMedCentralCrossRef
113.
go back to reference Kubler K, Ayub TH, Weber SK, Zivanovic O, Abramian A, Keyver-Paik MD, et al. Prognostic significance of tumor-associated macrophages in endometrial adenocarcinoma. Gynecol Oncol. 2014;135:176–83.PubMedCrossRef Kubler K, Ayub TH, Weber SK, Zivanovic O, Abramian A, Keyver-Paik MD, et al. Prognostic significance of tumor-associated macrophages in endometrial adenocarcinoma. Gynecol Oncol. 2014;135:176–83.PubMedCrossRef
115.
go back to reference Romero D. CAR T cells ready to go mainstream. Nature reviews. Clin Oncol. 2016;13:396–7. Romero D. CAR T cells ready to go mainstream. Nature reviews. Clin Oncol. 2016;13:396–7.
116.
go back to reference Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128.PubMedPubMedCentralCrossRef Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128.PubMedPubMedCentralCrossRef
117.
go back to reference Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: immunoregulatory functions of the inhibitory fc gamma receptor, FcRIIB (CD32B). J Leukoc Biol. 2018;103:1077–88.CrossRef Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: immunoregulatory functions of the inhibitory fc gamma receptor, FcRIIB (CD32B). J Leukoc Biol. 2018;103:1077–88.CrossRef
118.
go back to reference Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, et al. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018;7:e36688.PubMedPubMedCentralCrossRef Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, et al. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018;7:e36688.PubMedPubMedCentralCrossRef
119.
go back to reference Zhang WL, Liu L, Su HF, Liu Q, Shen J, Dai HR, et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer. 2019;121:837–45.PubMedPubMedCentralCrossRef Zhang WL, Liu L, Su HF, Liu Q, Shen J, Dai HR, et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer. 2019;121:837–45.PubMedPubMedCentralCrossRef
120.
go back to reference Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38:947.PubMedPubMedCentralCrossRef Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38:947.PubMedPubMedCentralCrossRef
121.
go back to reference Zhang L, Tian L, Dai XY, Yu H, Wang JJ, Lei AH, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 2020;13:153.PubMedPubMedCentralCrossRef Zhang L, Tian L, Dai XY, Yu H, Wang JJ, Lei AH, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 2020;13:153.PubMedPubMedCentralCrossRef
122.
go back to reference Niu ZY, Chen GX, Chang W, Sun PY, Luo ZX, Zhang HY, et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J Pathol. 2021;253:247–57.PubMedCrossRef Niu ZY, Chen GX, Chang W, Sun PY, Luo ZX, Zhang HY, et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J Pathol. 2021;253:247–57.PubMedCrossRef
123.
go back to reference Aalipour A, Chuang HY, Murty S, D'Souza AL, Park SM, Gulati GS, et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol. 2019;37:531.PubMedPubMedCentralCrossRef Aalipour A, Chuang HY, Murty S, D'Souza AL, Park SM, Gulati GS, et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol. 2019;37:531.PubMedPubMedCentralCrossRef
126.
go back to reference Lebbe C, Weber JS, Maio M, Neyns B, Harmankaya K, Hamid O, et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014;25:2277–84.PubMedPubMedCentralCrossRef Lebbe C, Weber JS, Maio M, Neyns B, Harmankaya K, Hamid O, et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014;25:2277–84.PubMedPubMedCentralCrossRef
127.
go back to reference Shen S, Zhang Y, Chen KG, Luo YL, Wang J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and Cancer therapy. Mol Pharm. 2018;15:3642–53.PubMedCrossRef Shen S, Zhang Y, Chen KG, Luo YL, Wang J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and Cancer therapy. Mol Pharm. 2018;15:3642–53.PubMedCrossRef
128.
go back to reference Trac N, Chen LY, Zhang AL, Liao CP, Poon C, Wang J, et al. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J Control Release. 2021;329:614–23.PubMedCrossRef Trac N, Chen LY, Zhang AL, Liao CP, Poon C, Wang J, et al. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J Control Release. 2021;329:614–23.PubMedCrossRef
129.
go back to reference Zhang XH, Detering L, Sultan D, Luehmann H, Li L, Heo GS, et al. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma. ACS Nano. 2021;15:1186–98.PubMedPubMedCentralCrossRef Zhang XH, Detering L, Sultan D, Luehmann H, Li L, Heo GS, et al. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma. ACS Nano. 2021;15:1186–98.PubMedPubMedCentralCrossRef
130.
go back to reference Jung K, Heishi T, Khan OF, Kowalski PS, Incio J, Rahbari NN, et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Invest. 2017;127:3039–51.PubMedPubMedCentralCrossRef Jung K, Heishi T, Khan OF, Kowalski PS, Incio J, Rahbari NN, et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Invest. 2017;127:3039–51.PubMedPubMedCentralCrossRef
131.
go back to reference Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Lett. 2017;17:3822–9.PubMedCrossRef Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Lett. 2017;17:3822–9.PubMedCrossRef
132.
go back to reference Qian Y, Qiao S, Dai YF, Xu GQ, Dai BL, Lu LS, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11:9536–49.PubMedCrossRef Qian Y, Qiao S, Dai YF, Xu GQ, Dai BL, Lu LS, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11:9536–49.PubMedCrossRef
133.
go back to reference Wang YC, Luan ZY, Zhao CY, Bai CH, Yang KJ. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci. 2020;142:105136.PubMedCrossRef Wang YC, Luan ZY, Zhao CY, Bai CH, Yang KJ. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci. 2020;142:105136.PubMedCrossRef
134.
go back to reference Wei Q, Shen N, Yu HY, Wang Y, Tang ZH, Chen XS. FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity. Biomater Sci. 2020;8:5666–76.PubMedCrossRef Wei Q, Shen N, Yu HY, Wang Y, Tang ZH, Chen XS. FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity. Biomater Sci. 2020;8:5666–76.PubMedCrossRef
135.
go back to reference Tian LL, Yi X, Dong ZL, Xu J, Liang C, Chao Y, et al. Calcium bisphosphonate nanoparticles with Chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced Cancer radioisotope therapy. ACS Nano. 2018;12:11541–51.PubMedCrossRef Tian LL, Yi X, Dong ZL, Xu J, Liang C, Chao Y, et al. Calcium bisphosphonate nanoparticles with Chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced Cancer radioisotope therapy. ACS Nano. 2018;12:11541–51.PubMedCrossRef
136.
go back to reference Zang XL, Zhang XX, Hu HY, Qiao MX, Zhao XL, Deng YH, et al. Targeted delivery of Zoledronate to tumor-associated macrophages for Cancer immunotherapy. Mol Pharm. 2019;16:2249–58.PubMedCrossRef Zang XL, Zhang XX, Hu HY, Qiao MX, Zhao XL, Deng YH, et al. Targeted delivery of Zoledronate to tumor-associated macrophages for Cancer immunotherapy. Mol Pharm. 2019;16:2249–58.PubMedCrossRef
137.
go back to reference Zhang XX, Zang XL, Qiao MX, Zhao XL, Hu HY, Chen DW. Targeted delivery of Dasatinib to deplete tumor-associated macrophages by Mannosylated mixed micelles for tumor immunotherapy. Acs Biomater Sci Eng. 2020;6:5675–84.PubMedCrossRef Zhang XX, Zang XL, Qiao MX, Zhao XL, Hu HY, Chen DW. Targeted delivery of Dasatinib to deplete tumor-associated macrophages by Mannosylated mixed micelles for tumor immunotherapy. Acs Biomater Sci Eng. 2020;6:5675–84.PubMedCrossRef
138.
go back to reference Liu Y, Wang J, Zhang J, Marbach S, Xu W, Zhu L. Targeting tumor-associated macrophages by MMP2-sensitive apoptotic body-mimicking nanoparticles. ACS Appl Mater Interfaces. 2020;12:52402–14.PubMedPubMedCentralCrossRef Liu Y, Wang J, Zhang J, Marbach S, Xu W, Zhu L. Targeting tumor-associated macrophages by MMP2-sensitive apoptotic body-mimicking nanoparticles. ACS Appl Mater Interfaces. 2020;12:52402–14.PubMedPubMedCentralCrossRef
139.
go back to reference Deng CF, Zhang Q, Jia MD, Zhao J, Sun X, Gong T, et al. Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast Cancer. Adv Sci. 2019;6:1801868.CrossRef Deng CF, Zhang Q, Jia MD, Zhao J, Sun X, Gong T, et al. Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast Cancer. Adv Sci. 2019;6:1801868.CrossRef
140.
go back to reference Tian DD, Qin FF, Zhao HJ, Zhang CF, Wang H, Liu N, et al. Bio-responsive nanoparticle for tumor targeting and enhanced photo-immunotherapy. Colloids Surf B Biointerfaces. 2021;202:111681.PubMedCrossRef Tian DD, Qin FF, Zhao HJ, Zhang CF, Wang H, Liu N, et al. Bio-responsive nanoparticle for tumor targeting and enhanced photo-immunotherapy. Colloids Surf B Biointerfaces. 2021;202:111681.PubMedCrossRef
141.
go back to reference Huang ZS, Yao D, Ye QS, Jiang HJ, Gu R, Ji CW, et al. Zoledronic acid-gadolinium coordination polymer Nanorods for improved tumor Radioimmunotherapy by Synergetically inducing immunogenic cell death and reprogramming the immunosuppressive microenvironment. ACS Nano. 2021;15:8450–65.PubMedCrossRef Huang ZS, Yao D, Ye QS, Jiang HJ, Gu R, Ji CW, et al. Zoledronic acid-gadolinium coordination polymer Nanorods for improved tumor Radioimmunotherapy by Synergetically inducing immunogenic cell death and reprogramming the immunosuppressive microenvironment. ACS Nano. 2021;15:8450–65.PubMedCrossRef
142.
go back to reference Yu GT, Rao L, Wu H, Yang LL, Bu LL, Deng WW, et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for Cancer Theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv Funct Mater. 2018;28:1801389. Yu GT, Rao L, Wu H, Yang LL, Bu LL, Deng WW, et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for Cancer Theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv Funct Mater. 2018;28:1801389.
143.
go back to reference Rong L, Zhang Y, Li WS, Su ZG, Fadhil JI, Zhang C. Iron chelated melanin-like nanoparticles for tumor-associated macrophage repolarization and cancer therapy. Biomaterials. 2019;225:119515.PubMedCrossRef Rong L, Zhang Y, Li WS, Su ZG, Fadhil JI, Zhang C. Iron chelated melanin-like nanoparticles for tumor-associated macrophage repolarization and cancer therapy. Biomaterials. 2019;225:119515.PubMedCrossRef
144.
go back to reference Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Ahmed RLMS, Kohler RH, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2:578.PubMedPubMedCentralCrossRef Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Ahmed RLMS, Kohler RH, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2:578.PubMedPubMedCentralCrossRef
145.
go back to reference Rodell CB, Ahmed MS, Garris CS, Pittet MJ, Weissleder R. Development of Adamantane-conjugated TLR7/8 agonists for supramolecular delivery and Cancer immunotherapy. Theranostics. 2019;9:8426–36.PubMedPubMedCentralCrossRef Rodell CB, Ahmed MS, Garris CS, Pittet MJ, Weissleder R. Development of Adamantane-conjugated TLR7/8 agonists for supramolecular delivery and Cancer immunotherapy. Theranostics. 2019;9:8426–36.PubMedPubMedCentralCrossRef
146.
go back to reference Shan H, Dou WL, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 2020;12:22268–80.PubMedCrossRef Shan H, Dou WL, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 2020;12:22268–80.PubMedCrossRef
147.
go back to reference Bolli E, Scherger M, Arnouk SM, Antunes ARP, Strassburger D, Urschbach M, et al. Targeted repolarization of tumor-associated macrophages via Imidazoquinoline-linked Nanobodies. Adv Sci. 2021;8:2004574.CrossRef Bolli E, Scherger M, Arnouk SM, Antunes ARP, Strassburger D, Urschbach M, et al. Targeted repolarization of tumor-associated macrophages via Imidazoquinoline-linked Nanobodies. Adv Sci. 2021;8:2004574.CrossRef
148.
go back to reference Liu LQ, Wang Y, Guo X, Zhao JY, Zhou SB. A biomimetic polymer magnetic Nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small. 2020;16:e2003543.PubMedCrossRef Liu LQ, Wang Y, Guo X, Zhao JY, Zhou SB. A biomimetic polymer magnetic Nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small. 2020;16:e2003543.PubMedCrossRef
149.
go back to reference Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials. 2021;268:120601.PubMedCrossRef Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials. 2021;268:120601.PubMedCrossRef
150.
go back to reference Nie WD, Wu GH, Zhang JF, Huang LL, Ding JJ, Jiang AQ, et al. Responsive exosome Nano-bioconjugates for synergistic Cancer therapy. Angew Chem Int Ed Engl. 2020;59:2018–22.PubMedCrossRef Nie WD, Wu GH, Zhang JF, Huang LL, Ding JJ, Jiang AQ, et al. Responsive exosome Nano-bioconjugates for synergistic Cancer therapy. Angew Chem Int Ed Engl. 2020;59:2018–22.PubMedCrossRef
151.
go back to reference Rao L, Zhao SK, Wen CR, Tian R, Lin LS, Cai B, et al. Activating macrophage-mediated Cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 2020;32:e2004853.PubMedPubMedCentralCrossRef Rao L, Zhao SK, Wen CR, Tian R, Lin LS, Cai B, et al. Activating macrophage-mediated Cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 2020;32:e2004853.PubMedPubMedCentralCrossRef
152.
go back to reference Chen Q, Wang C, Zhang XD, Chen GJ, Hu QY, Li HJ, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14:89.PubMedCrossRef Chen Q, Wang C, Zhang XD, Chen GJ, Hu QY, Li HJ, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14:89.PubMedCrossRef
153.
go back to reference Li CX, Zhang Y, Dong X, Zhang L, Liu MD, Li B, et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv Mater. 2019;31:e1807211.PubMedCrossRef Li CX, Zhang Y, Dong X, Zhang L, Liu MD, Li B, et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv Mater. 2019;31:e1807211.PubMedCrossRef
154.
go back to reference Li K, Lu L, Xue CC, Liu J, He Y, Zhou J, et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale. 2020;12:130–44.PubMedCrossRef Li K, Lu L, Xue CC, Liu J, He Y, Zhou J, et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale. 2020;12:130–44.PubMedCrossRef
155.
go back to reference Gao F, Tang Y, Liu WL, Zou MZ, Huang C, Liu CJ, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31:e1904639.PubMedCrossRef Gao F, Tang Y, Liu WL, Zou MZ, Huang C, Liu CJ, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31:e1904639.PubMedCrossRef
156.
go back to reference Chang CC, Dinh TK, Lee YA, Wang FN, Sung YC, Yu PL, et al. Nanoparticle delivery of MnO2 and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl Mater Interfaces. 2020;12:44407–19.PubMedCrossRef Chang CC, Dinh TK, Lee YA, Wang FN, Sung YC, Yu PL, et al. Nanoparticle delivery of MnO2 and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl Mater Interfaces. 2020;12:44407–19.PubMedCrossRef
157.
go back to reference Xu JJ, Zheng BB, Zhang SH, Liao XL, Tong QL, Wei GG, et al. Copper sulfide nanoparticle-redirected macrophages for adoptive transfer therapy of melanoma. Adv Funct Mater. 2021;31:2008022. Xu JJ, Zheng BB, Zhang SH, Liao XL, Tong QL, Wei GG, et al. Copper sulfide nanoparticle-redirected macrophages for adoptive transfer therapy of melanoma. Adv Funct Mater. 2021;31:2008022.
158.
go back to reference Hou T, Wang TQ, Mu WW, Yang R, Liang S, Zhang ZP, et al. Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nanomicro Lett. 2021;13:6. Hou T, Wang TQ, Mu WW, Yang R, Liang S, Zhang ZP, et al. Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nanomicro Lett. 2021;13:6.
159.
go back to reference Liu T, Xu LG, He LZ, Zhao JF, Zhang ZH, Chen Q, et al. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today. 2020;35:100975. Liu T, Xu LG, He LZ, Zhao JF, Zhang ZH, Chen Q, et al. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today. 2020;35:100975.
160.
go back to reference Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. J Control Release. 2020;325:235–48.PubMedCrossRef Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. J Control Release. 2020;325:235–48.PubMedCrossRef
161.
go back to reference Esser AK, Ross MH, Fontana F, Su XM, Gabay A, Fox GC, et al. Nanotherapy delivery of c-myc inhibitor targets Protumor macrophages and preserves antitumor macrophages in breast Cancer. Theranostics. 2020;10:7510–26.PubMedPubMedCentralCrossRef Esser AK, Ross MH, Fontana F, Su XM, Gabay A, Fox GC, et al. Nanotherapy delivery of c-myc inhibitor targets Protumor macrophages and preserves antitumor macrophages in breast Cancer. Theranostics. 2020;10:7510–26.PubMedPubMedCentralCrossRef
162.
go back to reference Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R-and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31:e1904364.PubMedCrossRef Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R-and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31:e1904364.PubMedCrossRef
163.
go back to reference Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials. 2020;227:119559.PubMedCrossRef Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials. 2020;227:119559.PubMedCrossRef
164.
go back to reference Wang Y, Tiruthani K, Li SR, Hu MY, Zhong GJ, Tang Y, et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv Mater. 2021;33:e2007603.PubMedCrossRef Wang Y, Tiruthani K, Li SR, Hu MY, Zhong GJ, Tang Y, et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv Mater. 2021;33:e2007603.PubMedCrossRef
165.
go back to reference He YH, Wang MN, Li XL, Yu T, Gao X. Targeted MIP-3 beta plasmid nanoparticles induce dendritic cell maturation and inhibit M2 macrophage polarisation to suppress cancer growth. Biomaterials. 2020;249:120046.PubMedCrossRef He YH, Wang MN, Li XL, Yu T, Gao X. Targeted MIP-3 beta plasmid nanoparticles induce dendritic cell maturation and inhibit M2 macrophage polarisation to suppress cancer growth. Biomaterials. 2020;249:120046.PubMedCrossRef
166.
go back to reference Zhang YM, Guo C, Liu LP, Xu J, Jiang H, Li DQ, et al. ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death. Theranostics. 2020;10:11197–214.PubMedPubMedCentralCrossRef Zhang YM, Guo C, Liu LP, Xu J, Jiang H, Li DQ, et al. ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death. Theranostics. 2020;10:11197–214.PubMedPubMedCentralCrossRef
167.
go back to reference Yang SN, Zhang YM, Lu SJ, Yang L, Yu SN, Yang HY. CaCO3-encapsulated au nanoparticles modulate macrophages toward M1-like phenotype. Acs Applied Bio Mater. 2021;4:3214–23.CrossRef Yang SN, Zhang YM, Lu SJ, Yang L, Yu SN, Yang HY. CaCO3-encapsulated au nanoparticles modulate macrophages toward M1-like phenotype. Acs Applied Bio Mater. 2021;4:3214–23.CrossRef
168.
go back to reference Rangasami VK, Samanta S, Parihar VS, Asawa K, Zhu K, Varghese OP, et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy: a novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr Polym. 2021;254:117291.PubMedCrossRef Rangasami VK, Samanta S, Parihar VS, Asawa K, Zhu K, Varghese OP, et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy: a novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr Polym. 2021;254:117291.PubMedCrossRef
169.
go back to reference Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11:2892–916.PubMedPubMedCentralCrossRef Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11:2892–916.PubMedPubMedCentralCrossRef
170.
go back to reference Hu MY, Wang Y, Xu LG, An S, Tang Y, Zhou XF, et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun. 2019;10:2993.PubMedPubMedCentralCrossRef Hu MY, Wang Y, Xu LG, An S, Tang Y, Zhou XF, et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun. 2019;10:2993.PubMedPubMedCentralCrossRef
171.
go back to reference Fu XC, Yu JM, Yuan AR, Liu LB, Zhao H, Huang YM, et al. Polymer nanoparticles regulate macrophage repolarization for antitumor treatment. Chem Commun. 2021;57:6919–22.CrossRef Fu XC, Yu JM, Yuan AR, Liu LB, Zhao H, Huang YM, et al. Polymer nanoparticles regulate macrophage repolarization for antitumor treatment. Chem Commun. 2021;57:6919–22.CrossRef
172.
go back to reference Li L, Zhen MM, Wang HY, Sun ZH, Jia W, Zhao ZP, et al. Functional Gadofullerene nanoparticles trigger robust Cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment. Nano Lett. 2020;20:4487–96.PubMedCrossRef Li L, Zhen MM, Wang HY, Sun ZH, Jia W, Zhao ZP, et al. Functional Gadofullerene nanoparticles trigger robust Cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment. Nano Lett. 2020;20:4487–96.PubMedCrossRef
173.
go back to reference Chen YZ, Song WT, Shen LM, Qiu NS, Hu MY, Liu Y, et al. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors. ACS Nano. 2019;13:1751–63.PubMed Chen YZ, Song WT, Shen LM, Qiu NS, Hu MY, Liu Y, et al. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors. ACS Nano. 2019;13:1751–63.PubMed
174.
go back to reference Huang W, He LZ, Ouyang J, Chen Q, Liu C, Tao W, et al. Triangle-shaped tellurium Nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter. 2020;3:1725–53.CrossRef Huang W, He LZ, Ouyang J, Chen Q, Liu C, Tao W, et al. Triangle-shaped tellurium Nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter. 2020;3:1725–53.CrossRef
175.
go back to reference Deng GJ, Sun ZH, Li SP, Peng XH, Li WJ, Zhou LH, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal tumor growth. ACS Nano. 2018;12:12096–108.PubMedCrossRef Deng GJ, Sun ZH, Li SP, Peng XH, Li WJ, Zhou LH, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal tumor growth. ACS Nano. 2018;12:12096–108.PubMedCrossRef
176.
go back to reference Argyle D, Kitamura T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front Immunol. 2018;9:2629.PubMedPubMedCentralCrossRef Argyle D, Kitamura T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front Immunol. 2018;9:2629.PubMedPubMedCentralCrossRef
177.
go back to reference Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264.PubMedPubMedCentralCrossRef Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264.PubMedPubMedCentralCrossRef
178.
go back to reference Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, et al. Tumoral immune cell exploitation in colorectal Cancer metastases can be targeted effectively by anti-CCR5 therapy in Cancer patients. Cancer Cell. 2016;29:587–601.PubMedCrossRef Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, et al. Tumoral immune cell exploitation in colorectal Cancer metastases can be targeted effectively by anti-CCR5 therapy in Cancer patients. Cancer Cell. 2016;29:587–601.PubMedCrossRef
179.
go back to reference Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, et al. Structure-guided blockade of CSF1R kinase in Tenosynovial Giant-cell tumor. N Engl J Med. 2015;373:428–37.PubMedCrossRef Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, et al. Structure-guided blockade of CSF1R kinase in Tenosynovial Giant-cell tumor. N Engl J Med. 2015;373:428–37.PubMedCrossRef
180.
go back to reference Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36:6049–58.PubMedPubMedCentralCrossRef Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36:6049–58.PubMedPubMedCentralCrossRef
181.
go back to reference Xia Q, Zhang YT, Li Z, Hou XF, Feng NP. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019;9:675–89.PubMedPubMedCentralCrossRef Xia Q, Zhang YT, Li Z, Hou XF, Feng NP. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019;9:675–89.PubMedPubMedCentralCrossRef
182.
go back to reference Stresing V, Daubine F, Benzaid I, Monkkonen H, Clezardin P. Bisphosphonates in cancer therapy. Cancer Lett. 2007;257:16–35.PubMedCrossRef Stresing V, Daubine F, Benzaid I, Monkkonen H, Clezardin P. Bisphosphonates in cancer therapy. Cancer Lett. 2007;257:16–35.PubMedCrossRef
183.
go back to reference Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li HM, et al. Macrophage-specific RNA interference targeting via “click”, Mannosylated polymeric micelles. Mol Pharm. 2013;10:975–87.PubMedPubMedCentralCrossRef Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li HM, et al. Macrophage-specific RNA interference targeting via “click”, Mannosylated polymeric micelles. Mol Pharm. 2013;10:975–87.PubMedPubMedCentralCrossRef
184.
go back to reference Zhang L, Zhou HL, Belzile O, Thorpe P, Zhao DW. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J Control Release. 2014;183:114–23.PubMedCrossRef Zhang L, Zhou HL, Belzile O, Thorpe P, Zhao DW. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J Control Release. 2014;183:114–23.PubMedCrossRef
185.
go back to reference Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–27.PubMedCrossRef Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–27.PubMedCrossRef
186.
go back to reference Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 2020;21:120–34.PubMedCrossRef Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 2020;21:120–34.PubMedCrossRef
187.
go back to reference Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019;20:E452–63.PubMedCrossRef Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019;20:E452–63.PubMedCrossRef
188.
189.
go back to reference Zhang F, Lu GH, Wen XL, Li F, Ji XY, Li QQ, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J Control Release. 2020;326:131–9.PubMedCrossRef Zhang F, Lu GH, Wen XL, Li F, Ji XY, Li QQ, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J Control Release. 2020;326:131–9.PubMedCrossRef
190.
go back to reference Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A. 2012;109:2066–71.PubMedPubMedCentralCrossRef Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A. 2012;109:2066–71.PubMedPubMedCentralCrossRef
191.
go back to reference Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1 alpha and HIF2 alpha stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014;12:1520–31.PubMedCrossRef Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1 alpha and HIF2 alpha stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014;12:1520–31.PubMedCrossRef
192.
go back to reference Yang GB, Xu LG, Chao Y, Xu J, Sun XQ, Wu YF, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun. 2017;8:902.PubMedPubMedCentralCrossRef Yang GB, Xu LG, Chao Y, Xu J, Sun XQ, Wu YF, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun. 2017;8:902.PubMedPubMedCentralCrossRef
193.
go back to reference Stepanov AV, Markov OV, Chernikov IV, Gladkikh DV, Zhang HK, Jones T, et al. Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. Sci Adv. 2018;4:eaau4580.PubMedPubMedCentralCrossRef Stepanov AV, Markov OV, Chernikov IV, Gladkikh DV, Zhang HK, Jones T, et al. Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. Sci Adv. 2018;4:eaau4580.PubMedPubMedCentralCrossRef
194.
go back to reference Wei BC, Pan JM, Yuan RT, Shao BF, Wang Y, Guo X, et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for Cancer immunotherapy. Nano Lett. 2021;21:4231–40.PubMedCrossRef Wei BC, Pan JM, Yuan RT, Shao BF, Wang Y, Guo X, et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for Cancer immunotherapy. Nano Lett. 2021;21:4231–40.PubMedCrossRef
195.
go back to reference Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.PubMedCrossRef Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.PubMedCrossRef
196.
go back to reference Liu LL, Lu Y, Martinez J, Bi YJ, Lian GJ, Wang TT, et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 alpha-dependent. Proc Natl Acad Sci U S A. 2016;113:1564–9.PubMedPubMedCentralCrossRef Liu LL, Lu Y, Martinez J, Bi YJ, Lian GJ, Wang TT, et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 alpha-dependent. Proc Natl Acad Sci U S A. 2016;113:1564–9.PubMedPubMedCentralCrossRef
197.
go back to reference Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.PubMedPubMedCentralCrossRef Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.PubMedPubMedCentralCrossRef
198.
go back to reference Zhou DX, Huang C, Lin Z, Zhan SX, Kong LN, Fang CB, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26:192–7.PubMedCrossRef Zhou DX, Huang C, Lin Z, Zhan SX, Kong LN, Fang CB, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26:192–7.PubMedCrossRef
199.
go back to reference Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao YH, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast Cancer. Clin Cancer Res. 2015;21:3794–805.PubMedCrossRef Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao YH, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast Cancer. Clin Cancer Res. 2015;21:3794–805.PubMedCrossRef
200.
go back to reference Bergamaschi A, Tagliabue E, Sorlie T, Naurne B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214:357–67.PubMedCrossRef Bergamaschi A, Tagliabue E, Sorlie T, Naurne B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214:357–67.PubMedCrossRef
201.
go back to reference Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits Cancer progression and metastasis. Cell Rep. 2016;15:2000–11.PubMedCrossRef Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits Cancer progression and metastasis. Cell Rep. 2016;15:2000–11.PubMedCrossRef
202.
go back to reference Yue YL, Li FF, Li Y, Wang YZ, Guo XJ, Cheng ZX, et al. Biomimetic nanoparticles carrying a repolarization agent of tumor-associated macrophages for remodeling of the inflammatory microenvironment following Photothermal therapy. ACS Nano. 2021;15:15166–79.PubMedCrossRef Yue YL, Li FF, Li Y, Wang YZ, Guo XJ, Cheng ZX, et al. Biomimetic nanoparticles carrying a repolarization agent of tumor-associated macrophages for remodeling of the inflammatory microenvironment following Photothermal therapy. ACS Nano. 2021;15:15166–79.PubMedCrossRef
203.
go back to reference Chen CL, Song MY, Du YY, Yu Y, Li CG, Han Y, et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021;21:5522–31.PubMedCrossRef Chen CL, Song MY, Du YY, Yu Y, Li CG, Han Y, et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021;21:5522–31.PubMedCrossRef
Metadata
Title
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies
Authors
Nisha Kumari
Seung Hong Choi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2022
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-022-02272-x

Other articles of this Issue 1/2022

Journal of Experimental & Clinical Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine