Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | NSCLC | Research

Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC

Authors: Vincenza Ciaramella, Ferdinando Carlo Sasso, Raimondo Di Liello, Carminia Maria Della Corte, Giusi Barra, Giuseppe Viscardi, Giovanna Esposito, Francesca Sparano, Teresa Troiani, Erika Martinelli, Michele Orditura, Ferdinando De Vita, Fortunato Ciardiello, Floriana Morgillo

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Pioglitazone, a synthetic peroxisome proliferator activated receptor (PPAR-γ) ligand, is known as an antidiabetic drug included in the thiazolidinediones (TZDs) class. It regulates the lipid and glucose cell metabolism and recently a role in the inhibition of numerous cancer cell processes has been described.

Methods

In our work we investigate the anti-tumor effects of pioglitazone in in vitro models of non small cell lung cancer (NSCLC) and also, we generated ex-vivo three-dimensional (3D) cultures from human lung adenocarcinoma (ADK) as a model to test drug efficacy observed in vitro. The inhibitory effect of pioglitazone on cell proliferation, apoptosis and cell invasion in a panel of human NSCLC cell lines was evaluated by multiple assays.

Results

Pioglitazone reduced proliferative and invasive abilities with an IC50 ranging between 5 and 10 μM and induced apoptosis of NSCLC cells. mRNA microarray expression profiling showed a down regulation of MAPK, Myc and Ras genes after treatment with pioglitazone; altered gene expression was confirmed by protein analysis in a dose-related reduction of survivin and phosphorylated proteins levels of MAPK pathway. Interestingly mRNA microarray analysis showed also that pioglitazone affects TGFβ pathway, which is important in the epithelial-to-mesenchimal transition (EMT) process, by down-regulating TGFβR1 and SMAD3 mRNA expression. In addition, extracellular acidification rate (ECAR) and a proportional reduction of markers of altered glucose metabolism in treated cells demonstrated also cell bioenergetics modulation by pioglitazone.

Conclusions

Data indicate that PPAR-γ agonists represent an attractive treatment tool and by suppression of cell growth (in vitro and ex vivo models) and of invasion via blockade of MAPK cascade and TGFβ/SMADs signaling, respectively, and its role in cancer bioenergetics and metabolism indicate that PPAR-γ agonists represent an attractive treatment tool for NSCLC.
Literature
2.
go back to reference Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. CurrOpin Cell Biol. 2015;33:49–54. Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. CurrOpin Cell Biol. 2015;33:49–54.
3.
go back to reference Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2:236–40.CrossRef Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2:236–40.CrossRef
6.
go back to reference Yousefnia S, Momenzadeh S, Forootan FS, Ghaedi K, Esfahani MHN. The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity. Gene. 2018;649:14–22.CrossRef Yousefnia S, Momenzadeh S, Forootan FS, Ghaedi K, Esfahani MHN. The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity. Gene. 2018;649:14–22.CrossRef
8.
go back to reference Lamichane S, DahalLamichane B, Kwon SM. Pivotal roles of peroxisome proliferator-ActivatedReceptors (PPARs) and their signal Cascade for cellular and whole-body energy homeostasis. Int JMol Sci. 2018;19:949.CrossRef Lamichane S, DahalLamichane B, Kwon SM. Pivotal roles of peroxisome proliferator-ActivatedReceptors (PPARs) and their signal Cascade for cellular and whole-body energy homeostasis. Int JMol Sci. 2018;19:949.CrossRef
11.
12.
go back to reference Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L. Thiazolidinediones and risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol. 2007;25:1476–81.CrossRef Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L. Thiazolidinediones and risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol. 2007;25:1476–81.CrossRef
13.
go back to reference DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ, et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. CurrProtoc Pharmacol. 2013;14:14–23. DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ, et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. CurrProtoc Pharmacol. 2013;14:14–23.
14.
go back to reference Wei-guo Z, Hui Y, Shan L, Yun Z, Wen-cheng N, Fu-Jin Y. PPAR-Gamma agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-kappaB pathways. Immunol Cell Biol. 2010;88:305–12.CrossRef Wei-guo Z, Hui Y, Shan L, Yun Z, Wen-cheng N, Fu-Jin Y. PPAR-Gamma agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-kappaB pathways. Immunol Cell Biol. 2010;88:305–12.CrossRef
15.
go back to reference Genc G, Kilinc V, Bedir A, Ozkaya O. Effect of creatine and pioglitazone on Hk-2 cell line cisplatin nephrotoxicity. Ren Fail. 2014;36:1104–7.CrossRef Genc G, Kilinc V, Bedir A, Ozkaya O. Effect of creatine and pioglitazone on Hk-2 cell line cisplatin nephrotoxicity. Ren Fail. 2014;36:1104–7.CrossRef
16.
go back to reference Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (glut) proteins in cancer. J Cell Physiol. 2005;202:654–62.CrossRef Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (glut) proteins in cancer. J Cell Physiol. 2005;202:654–62.CrossRef
17.
go back to reference Boros LG, Puigjaner J, Cascante M, Lee W-NP, Brandes JL, Bassilina S, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–8.PubMed Boros LG, Puigjaner J, Cascante M, Lee W-NP, Brandes JL, Bassilina S, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–8.PubMed
18.
go back to reference Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y, et al. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer BiotherRadiopharm. 2009;24:81–90. Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y, et al. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer BiotherRadiopharm. 2009;24:81–90.
19.
go back to reference Coy JF, Dressler D, Wilde J, Schubert P. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative disease, diabetes and cancer. Clin Lab. 2005;51:257–73.PubMed Coy JF, Dressler D, Wilde J, Schubert P. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative disease, diabetes and cancer. Clin Lab. 2005;51:257–73.PubMed
20.
go back to reference Tsubaki M, Takeda T, Tomonari Y, Kawashima K, Itoh T, Imano M, et al. Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARγ-independent pathway. J Cell Physiol. 2018;233:3638–47.CrossRef Tsubaki M, Takeda T, Tomonari Y, Kawashima K, Itoh T, Imano M, et al. Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARγ-independent pathway. J Cell Physiol. 2018;233:3638–47.CrossRef
21.
go back to reference Cornell S. Comparison of the diabetes guidelines from the ADA/EASD and the AACE/ACE. J Am Pharmacists Assoc. 2017;57:261–5.CrossRef Cornell S. Comparison of the diabetes guidelines from the ADA/EASD and the AACE/ACE. J Am Pharmacists Assoc. 2017;57:261–5.CrossRef
22.
go back to reference Balaji V, Seshiah V, Ashtalakshmi G, Ramanan SG, Janarthinakani M. A retrospective study on finding correlation of pioglitazone and incidences of bladder cancer in the Indian population. Indian J Endocrinol Metab. 2014;18:425–7.CrossRef Balaji V, Seshiah V, Ashtalakshmi G, Ramanan SG, Janarthinakani M. A retrospective study on finding correlation of pioglitazone and incidences of bladder cancer in the Indian population. Indian J Endocrinol Metab. 2014;18:425–7.CrossRef
23.
go back to reference Kuo HW, Tiao MM, Ho SC, Yang CY. Pioglitazone use and the risk of bladder cancer. Kaohsiung J Med Sci. 2014;30:94–7.CrossRef Kuo HW, Tiao MM, Ho SC, Yang CY. Pioglitazone use and the risk of bladder cancer. Kaohsiung J Med Sci. 2014;30:94–7.CrossRef
24.
go back to reference Dave B, Mittal V, Tan NM, Chang JC. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 2012;14:202.CrossRef Dave B, Mittal V, Tan NM, Chang JC. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 2012;14:202.CrossRef
25.
go back to reference Levy L, Hill CS. Alterations in components of the TGF-h superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17:41–58.CrossRef Levy L, Hill CS. Alterations in components of the TGF-h superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17:41–58.CrossRef
26.
go back to reference Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol. 2011;226:1248–54.CrossRef Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol. 2011;226:1248–54.CrossRef
27.
go back to reference Robey RB, Hay N. Is Akt the “Warburg kinase”? Akt energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25–31.CrossRef Robey RB, Hay N. Is Akt the “Warburg kinase”? Akt energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25–31.CrossRef
28.
go back to reference Warburg O. On respiratory impairment in cancer cells. Science. 1956a;124:269–70.PubMed Warburg O. On respiratory impairment in cancer cells. Science. 1956a;124:269–70.PubMed
29.
30.
go back to reference Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, et al. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 2014;110:2030–9.CrossRef Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, et al. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 2014;110:2030–9.CrossRef
31.
go back to reference Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, et al. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. 2015;137:1587–97.CrossRef Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, et al. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. 2015;137:1587–97.CrossRef
Metadata
Title
Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC
Authors
Vincenza Ciaramella
Ferdinando Carlo Sasso
Raimondo Di Liello
Carminia Maria Della Corte
Giusi Barra
Giuseppe Viscardi
Giovanna Esposito
Francesca Sparano
Teresa Troiani
Erika Martinelli
Michele Orditura
Ferdinando De Vita
Fortunato Ciardiello
Floriana Morgillo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1176-1

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine