Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

RETRACTED ARTICLE: TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion

Authors: Chao Zhang, Xin Zhang, Ran Xu, Bin Huang, An-Jing Chen, Chao Li, Jian Wang, Xin-Gang Li

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Glioblastoma multiforme (GBM) is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is also emerging as a critical factor in aggressive behaviors of cancer cells; however, the relationship between TGF-β2 and autophagy in glioma has been poorly understood.

Methods

U251, T98 and U87 GBM cell lines as well as GBM cells from a primary human specimen were used in vitro and in vivo to evaluate the effect of TGF-β2 on autophagy. Western blot, qPCR, immunofluorescence and transmission-electron microscope were used to detect target molecular expression. Lentivirus and siRNA vehicle were introduced to establish cell lines, as well as mitotracker and seahorse experiment to study the metabolic process in glioma. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models.

Results

Here we demonstrated that TGF-β2 activated autophagy in human glioma cell lines and knockdown of Smad2 or inhibition of c-Jun NH2-terminal kinase, attenuated TGF-β2-induced autophagy. TGF-β2-induced autophagy is important for glioma invasion due to the alteration of epithelial-mesenchymal transition and metabolism conversion, particularly influencing mitochondria trafficking and membrane potential (△Ψm). Autopaghy also initiated a feedback on TGF-β2 in glioma by keeping its autocrine loop and affecting Smad2/3/7 expression. A xenograft model provided additional confirmation on combination of TGF-β inhibitor (Galunisertib) and autophagy inhibitor (CQ) to better “turn off” tumor growth.

Conclusion

Our findings elucidated a potential mechanism of autophagy-associated glioma invasion that TGF-β2 could initiate autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre J-Y. Primary brain tumours in adults. Lancet. 2012;379:1984–96.PubMedCrossRef Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre J-Y. Primary brain tumours in adults. Lancet. 2012;379:1984–96.PubMedCrossRef
2.
go back to reference Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol-Mech. 2014;9:1–25.CrossRef Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol-Mech. 2014;9:1–25.CrossRef
3.
go back to reference Owonikoko TK, Arbiser J, Zelnak A, Shu H-KG, Shim H, Robin AM, Kalkanis SN, Whitsett TG, Salhia B, Tran NL. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol. 2014;11:203–22.PubMedPubMedCentralCrossRef Owonikoko TK, Arbiser J, Zelnak A, Shu H-KG, Shim H, Robin AM, Kalkanis SN, Whitsett TG, Salhia B, Tran NL. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol. 2014;11:203–22.PubMedPubMedCentralCrossRef
4.
go back to reference Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14:777–83.PubMedCrossRef Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14:777–83.PubMedCrossRef
5.
go back to reference Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial–mesenchymal transitions in cancer. Cancer Res. 2012;72:4883–9.PubMedPubMedCentralCrossRef Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial–mesenchymal transitions in cancer. Cancer Res. 2012;72:4883–9.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.PubMedCrossRef Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.PubMedCrossRef
8.
go back to reference Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA. TGF-β as a therapeutic target in high grade gliomas–promises and challenges. Biochem Pharmacol. 2013;85:478–85.PubMedCrossRef Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA. TGF-β as a therapeutic target in high grade gliomas–promises and challenges. Biochem Pharmacol. 2013;85:478–85.PubMedCrossRef
9.
go back to reference Joseph J, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S, Walenkamp A, Boddeke E, Balasubramanyian V, Wagemakers M. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443.PubMedPubMedCentralCrossRef Joseph J, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S, Walenkamp A, Boddeke E, Balasubramanyian V, Wagemakers M. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443.PubMedPubMedCentralCrossRef
10.
go back to reference Kahlert U, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal (−like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 2013;331:131–8.PubMedCrossRef Kahlert U, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal (−like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 2013;331:131–8.PubMedCrossRef
11.
go back to reference Pala A, Karpel-Massler G, Kast RE, Wirtz CR, Halatsch M-E. Epidermal to mesenchymal transition and failure of EGFR-targeted therapy in glioblastoma. Cancers. 2012;4:523–30.PubMedPubMedCentralCrossRef Pala A, Karpel-Massler G, Kast RE, Wirtz CR, Halatsch M-E. Epidermal to mesenchymal transition and failure of EGFR-targeted therapy in glioblastoma. Cancers. 2012;4:523–30.PubMedPubMedCentralCrossRef
12.
go back to reference de Castro JV, Gonçalves CS, Costa S, Linhares P, Vaz R, Nabiço R, Amorim J, Viana-Pereira M, Reis RM, Costa BM. Impact of TGF-β1-509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumor Biol. 2015;36:6525–32.CrossRef de Castro JV, Gonçalves CS, Costa S, Linhares P, Vaz R, Nabiço R, Amorim J, Viana-Pereira M, Reis RM, Costa BM. Impact of TGF-β1-509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumor Biol. 2015;36:6525–32.CrossRef
13.
go back to reference Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front Oncol. 2013;3:53.PubMedPubMedCentral Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front Oncol. 2013;3:53.PubMedPubMedCentral
14.
go back to reference Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007;11:147–60.PubMedCrossRef Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007;11:147–60.PubMedCrossRef
15.
go back to reference Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U. Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer. 1996;65:332–7.PubMedCrossRef Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U. Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer. 1996;65:332–7.PubMedCrossRef
16.
go back to reference Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B. Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer. 2000;89:251–8.PubMedCrossRef Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B. Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer. 2000;89:251–8.PubMedCrossRef
17.
go back to reference Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN. Effect of the expression of transforming growth factor-β2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg. 1992;76:799–804.PubMedCrossRef Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN. Effect of the expression of transforming growth factor-β2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg. 1992;76:799–804.PubMedCrossRef
18.
go back to reference Bogdahn U, Hau P, Stockhammer G, Venkataramana N, Mahapatra A, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology. 2011;13:132–42.PubMedCrossRef Bogdahn U, Hau P, Stockhammer G, Venkataramana N, Mahapatra A, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology. 2011;13:132–42.PubMedCrossRef
19.
go back to reference Hau P, Jachimczak P, Schlaier J, Bogdahn U. TGF-β2 signaling in high-grade gliomas. Curr Pharm Biotechnol. 2011;12:2150–7.PubMedCrossRef Hau P, Jachimczak P, Schlaier J, Bogdahn U. TGF-β2 signaling in high-grade gliomas. Curr Pharm Biotechnol. 2011;12:2150–7.PubMedCrossRef
20.
go back to reference Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Techniq. 2001;52:401–10.CrossRef Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Techniq. 2001;52:401–10.CrossRef
21.
go back to reference Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 2009;69:8844–52.PubMedCrossRef Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 2009;69:8844–52.PubMedCrossRef
23.
go back to reference Bettum IJ, Gorad SS, Barkovskaya A, Pettersen S, Moestue SA, Vasiliauskaite K, Tenstad E, Øyjord T, Risa Ø, Nygaard V. Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett. 2015;366:71–83.PubMedCrossRef Bettum IJ, Gorad SS, Barkovskaya A, Pettersen S, Moestue SA, Vasiliauskaite K, Tenstad E, Øyjord T, Risa Ø, Nygaard V. Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett. 2015;366:71–83.PubMedCrossRef
24.
go back to reference O. Keunen, M. Johansson, A. Oudin, M. Sanzey, S.A.A. Rahim, F. Fack, F. Thorsen, T. Taxt, M. Bartos, R. Jirik, Anti-VEGF Treatment reduces blood supply and increases tumor cell invasion in glioblastoma, Proc Natl Acad Sci U S A, 108 (2011) 3749–3754. O. Keunen, M. Johansson, A. Oudin, M. Sanzey, S.A.A. Rahim, F. Fack, F. Thorsen, T. Taxt, M. Bartos, R. Jirik, Anti-VEGF Treatment reduces blood supply and increases tumor cell invasion in glioblastoma, Proc Natl Acad Sci U S A, 108 (2011) 3749–3754.
25.
go back to reference Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle. 2012;11:2022–9.PubMedPubMedCentralCrossRef Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle. 2012;11:2022–9.PubMedPubMedCentralCrossRef
27.
go back to reference Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75.PubMedCrossRef Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75.PubMedCrossRef
28.
go back to reference Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, Hsieh CL. Correlation of altered expression of the autophagy marker LC3B with poor prognosis in astrocytoma. Biomed Res Int. 2014;2014:723176.PubMedPubMedCentral Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, Hsieh CL. Correlation of altered expression of the autophagy marker LC3B with poor prognosis in astrocytoma. Biomed Res Int. 2014;2014:723176.PubMedPubMedCentral
29.
go back to reference Weber DC, Tille J-C, Combescure C, Egger J-F, Laouiti M, Hammad K, Granger P, Rubbia-Brandt L, Miralbell R. The prognostic value of expression of HIF1alpha, EGFR and VEGF-A, in localized prostate cancer for intermediate-and high-risk patients treated with radiation therapy with or without androgen deprivation therapy. Radiat Oncol. 2012;7:1748–17.CrossRef Weber DC, Tille J-C, Combescure C, Egger J-F, Laouiti M, Hammad K, Granger P, Rubbia-Brandt L, Miralbell R. The prognostic value of expression of HIF1alpha, EGFR and VEGF-A, in localized prostate cancer for intermediate-and high-risk patients treated with radiation therapy with or without androgen deprivation therapy. Radiat Oncol. 2012;7:1748–17.CrossRef
30.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.PubMedPubMedCentralCrossRef Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.PubMedPubMedCentralCrossRef
31.
go back to reference Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14.PubMedCrossRef Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14.PubMedCrossRef
32.
go back to reference Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-β. J Neuro-Oncol. 2001;53:177–85.CrossRef Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-β. J Neuro-Oncol. 2001;53:177–85.CrossRef
33.
go back to reference Forsyth P, Wong H, Laing T, Rewcastle N, Morris D, Muzik H, Leco K, Johnston R, Brasher P, Sutherland G. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Brit J Cancer. 1999, 1828;79 Forsyth P, Wong H, Laing T, Rewcastle N, Morris D, Muzik H, Leco K, Johnston R, Brasher P, Sutherland G. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Brit J Cancer. 1999, 1828;79
34.
go back to reference Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastatis. 1996;14:35–42.CrossRef Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastatis. 1996;14:35–42.CrossRef
35.
go back to reference Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338:956–9.PubMedPubMedCentralCrossRef Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338:956–9.PubMedPubMedCentralCrossRef
36.
go back to reference Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4:295–305.PubMedPubMedCentralCrossRef Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4:295–305.PubMedPubMedCentralCrossRef
37.
go back to reference Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, Kastenberger M, Kreutz M, Nickl-Jockschat T, Bogdahn U, Bosserhoff AK, Hau P. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology. 2009;11:368–80.PubMedPubMedCentralCrossRef Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, Kastenberger M, Kreutz M, Nickl-Jockschat T, Bogdahn U, Bosserhoff AK, Hau P. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology. 2009;11:368–80.PubMedPubMedCentralCrossRef
38.
39.
go back to reference van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, Tran MG, Sciot R, Hauben E, Hogendoorn PC, Delattre O, Maxwell PH, Hendrix MJ, Griffioen AW. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005;65:11520–8.PubMedCrossRef van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, Tran MG, Sciot R, Hauben E, Hogendoorn PC, Delattre O, Maxwell PH, Hendrix MJ, Griffioen AW. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005;65:11520–8.PubMedCrossRef
40.
go back to reference Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, Ferguson AN, Kashatus DF, Bao S, Rich JN. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–10.PubMedPubMedCentralCrossRef Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, Ferguson AN, Kashatus DF, Bao S, Rich JN. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–10.PubMedPubMedCentralCrossRef
41.
go back to reference Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, Rampini P, Kossenkov AV, Aird KM, Zhang R. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci U S A. 2015;112:8638–43.PubMedPubMedCentralCrossRef Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, Rampini P, Kossenkov AV, Aird KM, Zhang R. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci U S A. 2015;112:8638–43.PubMedPubMedCentralCrossRef
42.
go back to reference Gao Y, Su Y, Qu L, Xu S, Meng L, Cai S-Q, Shou C. Mitochondrial apoptosis contributes to the anti-cancer effect of Smilax Glabra Roxb. Toxicol Lett. 2011;207:112–20.PubMedCrossRef Gao Y, Su Y, Qu L, Xu S, Meng L, Cai S-Q, Shou C. Mitochondrial apoptosis contributes to the anti-cancer effect of Smilax Glabra Roxb. Toxicol Lett. 2011;207:112–20.PubMedCrossRef
43.
go back to reference Ryu SW, Yoon J, Yim N, Choi K, Choi C. Downregulation of OPA3 is responsible for transforming growth factor-beta-induced mitochondrial elongation and F-actin rearrangement in retinal pigment epithelial ARPE-19 cells. PLoS One. 2013;8:e63495.PubMedPubMedCentralCrossRef Ryu SW, Yoon J, Yim N, Choi K, Choi C. Downregulation of OPA3 is responsible for transforming growth factor-beta-induced mitochondrial elongation and F-actin rearrangement in retinal pigment epithelial ARPE-19 cells. PLoS One. 2013;8:e63495.PubMedPubMedCentralCrossRef
44.
go back to reference Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–68.PubMedPubMedCentralCrossRef Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–68.PubMedPubMedCentralCrossRef
45.
go back to reference Bhutia SK, Dash R, Das SK, Azab B, Su Z-z, Lee S-G, Grant S, Yacoub A, Dent P, Curiel DT. Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res. 2010;70:3667–76.PubMedPubMedCentralCrossRef Bhutia SK, Dash R, Das SK, Azab B, Su Z-z, Lee S-G, Grant S, Yacoub A, Dent P, Curiel DT. Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res. 2010;70:3667–76.PubMedPubMedCentralCrossRef
46.
go back to reference Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. T helper 2 cytokines inhibit autophagic control of intracellular mycobacterium tuberculosis. Immunity. 2007;27:505–17.PubMedCrossRef Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. T helper 2 cytokines inhibit autophagic control of intracellular mycobacterium tuberculosis. Immunity. 2007;27:505–17.PubMedCrossRef
47.
go back to reference Bertrand M, Petit V, Jain A, Amsellem R, Johansen T, Larue L, Codogno P, Beau I. SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle. 2015;14:364–74.PubMedPubMedCentralCrossRef Bertrand M, Petit V, Jain A, Amsellem R, Johansen T, Larue L, Codogno P, Beau I. SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle. 2015;14:364–74.PubMedPubMedCentralCrossRef
48.
go back to reference Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, Zhong H, Vazquez A, Kang Y, Karantza V. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10:2036–52.PubMedPubMedCentralCrossRef Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, Zhong H, Vazquez A, Kang Y, Karantza V. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10:2036–52.PubMedPubMedCentralCrossRef
50.
go back to reference Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer. 2003;3:807–20.PubMedCrossRef Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer. 2003;3:807–20.PubMedCrossRef
51.
go back to reference Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75.PubMedCrossRef Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75.PubMedCrossRef
Metadata
Title
RETRACTED ARTICLE: TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion
Authors
Chao Zhang
Xin Zhang
Ran Xu
Bin Huang
An-Jing Chen
Chao Li
Jian Wang
Xin-Gang Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0628-8

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine