Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2016

Open Access 01-12-2016 | Research

The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma

Authors: Lei Chang, Cuicui Li, Tao Guo, Haitao Wang, Weijie Ma, Yufeng Yuan, Quanyan Liu, Qifa Ye, Zhisu Liu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

In spite of progress in diagnostics and treatment of Hepatocellular Carcinoma (HCC), its prognosis remains poor, and improved treatment strategies for HCC require detailed understanding of the underlying mechanism. In this investigation we studied the role of Up-frameshift 1 (UPF1) in the tumorigenesis of HCC.

Methods

We determined the expression level of UPF1 in HCC tissues with quantitative real-time PCR and western blotting and then studied its clinical significance. Sodium bisulfite sequencing was used to investigate the regulation of UPF1. We explored the biological significance of UPF1 with gain-and-loss-of-function analyses both in vitro and in vivo. The relationship between UPF1 and SMAD7 was also investigated by western blotting and immunofluorescence.

Results

A great downregulation of UPF1 due to promoter hypermethylation was observed in tumor tissues compared to their adjacent normal tissues. Meanwhile, patients with low UPF1 expression have significantly poorer prognosis than those with high expression. Functionally, UPF1 regulated HCC tumorigenesis both in vitro and in vivo. Moreover, the decreased UPF1 level in HCC reduces NMD efficiency and leads to up-regulation of Smad7, then affects the TGF-β pathway.

Conclusion

Our findings revealed that UPF1 is a potential tumor suppressive gene and may be a potential therapeutic target for HCC.
Literature
1.
go back to reference Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist. 2010;15 Suppl 4:5–13.PubMedCrossRef Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist. 2010;15 Suppl 4:5–13.PubMedCrossRef
2.
go back to reference Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: Diagnosis and treatment. Gastroenterology. 2002;122:1609–19.PubMedCrossRef Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: Diagnosis and treatment. Gastroenterology. 2002;122:1609–19.PubMedCrossRef
3.
go back to reference El-Serag HB, Rudolph KL. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedCrossRef El-Serag HB, Rudolph KL. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedCrossRef
4.
go back to reference Floquet C, Deforges J, Rousset JP, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 2011;39:3350–62.PubMedPubMedCentralCrossRef Floquet C, Deforges J, Rousset JP, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 2011;39:3350–62.PubMedPubMedCentralCrossRef
5.
go back to reference Zhang J, Fan D, Jian Z, Chen GG, Lai PB. Cancer specific long noncoding rnas show differential expression patterns and competing endogenous rna potential in hepatocellular carcinoma. PLoS One. 2015;10:e0141042.PubMedPubMedCentralCrossRef Zhang J, Fan D, Jian Z, Chen GG, Lai PB. Cancer specific long noncoding rnas show differential expression patterns and competing endogenous rna potential in hepatocellular carcinoma. PLoS One. 2015;10:e0141042.PubMedPubMedCentralCrossRef
6.
go back to reference Cerkevich TJ. Transactional analysis for the physician: Stroking hunger and time structure. J Med Assoc State Ala. 1975;45:36–8. Cerkevich TJ. Transactional analysis for the physician: Stroking hunger and time structure. J Med Assoc State Ala. 1975;45:36–8.
7.
go back to reference Maquat LE. Nonsense-mediated mrna decay: Splicing, translation and mrnp dynamics. Nat Rev Mol Cell Biol. 2004;5:89–99.PubMedCrossRef Maquat LE. Nonsense-mediated mrna decay: Splicing, translation and mrnp dynamics. Nat Rev Mol Cell Biol. 2004;5:89–99.PubMedCrossRef
8.
go back to reference Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ. Genetic and epigenetic heterogeneity in cancer: A genome-centric perspective. J Cell Physiol. 2009;220:538–47.PubMedCrossRef Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ. Genetic and epigenetic heterogeneity in cancer: A genome-centric perspective. J Cell Physiol. 2009;220:538–47.PubMedCrossRef
9.
go back to reference Wang D, Wengrod J, Gardner LB. Overexpression of the c-myc oncogene inhibits nonsense-mediated rna decay in b lymphocytes. J Biol Chem. 2011;286:40038–43.PubMedPubMedCentralCrossRef Wang D, Wengrod J, Gardner LB. Overexpression of the c-myc oncogene inhibits nonsense-mediated rna decay in b lymphocytes. J Biol Chem. 2011;286:40038–43.PubMedPubMedCentralCrossRef
10.
go back to reference Rodriguez-Gabriel MA, Watt S, Bahler J, Russell P. Upf1, an rna helicase required for nonsense-mediated mrna decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol. 2006;26:6347–56.PubMedPubMedCentralCrossRef Rodriguez-Gabriel MA, Watt S, Bahler J, Russell P. Upf1, an rna helicase required for nonsense-mediated mrna decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol. 2006;26:6347–56.PubMedPubMedCentralCrossRef
11.
go back to reference Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mrna decay - mechanisms of substrate mrna recognition and degradation in mammalian cells. Biochim Biophys Acta. 1829;2013:612–23. Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mrna decay - mechanisms of substrate mrna recognition and degradation in mammalian cells. Biochim Biophys Acta. 1829;2013:612–23.
12.
go back to reference Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36:801–8.PubMedCrossRef Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36:801–8.PubMedCrossRef
13.
go back to reference Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian staufen1 recruits upf1 to specific mrna 3'utrs so as to elicit mrna decay. Cell. 2005;120:195–208.PubMedCrossRef Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian staufen1 recruits upf1 to specific mrna 3'utrs so as to elicit mrna decay. Cell. 2005;120:195–208.PubMedCrossRef
14.
go back to reference Kaygun H, Marzluff WF. Regulated degradation of replication-dependent histone mrnas requires both atr and upf1. Nat Struct Mol Biol. 2005;12:794–800.PubMedCrossRef Kaygun H, Marzluff WF. Regulated degradation of replication-dependent histone mrnas requires both atr and upf1. Nat Struct Mol Biol. 2005;12:794–800.PubMedCrossRef
15.
go back to reference Azzalin CM, Lingner J. The human rna surveillance factor upf1 is required for s phase progression and genome stability. Curr Biol. 2006;16:433–9.PubMedCrossRef Azzalin CM, Lingner J. The human rna surveillance factor upf1 is required for s phase progression and genome stability. Curr Biol. 2006;16:433–9.PubMedCrossRef
16.
go back to reference Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, et al. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated rna decay pathway. Cell Rep. 2014;6:748–64.PubMedPubMedCentralCrossRef Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, et al. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated rna decay pathway. Cell Rep. 2014;6:748–64.PubMedPubMedCentralCrossRef
17.
go back to reference Liu C, Karam R, Zhou Y, Su F, Ji Y, Li G, et al. The upf1 rna surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med. 2014;20:596–8.PubMedPubMedCentralCrossRef Liu C, Karam R, Zhou Y, Su F, Ji Y, Li G, et al. The upf1 rna surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med. 2014;20:596–8.PubMedPubMedCentralCrossRef
18.
go back to reference Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211:287–95.PubMedCrossRef Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211:287–95.PubMedCrossRef
19.
go back to reference Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 2006;66:8469–76.PubMedCrossRef Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 2006;66:8469–76.PubMedCrossRef
20.
go back to reference Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, et al. Biological and clinical significance of epigenetic silencing of marveld1 gene in lung cancer. Sci Rep. 2014;4:7545.PubMedPubMedCentralCrossRef Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, et al. Biological and clinical significance of epigenetic silencing of marveld1 gene in lung cancer. Sci Rep. 2014;4:7545.PubMedPubMedCentralCrossRef
21.
go back to reference Azzalin CM, Lingner J. The double life of upf1 in rna and DNA stability pathways. Cell Cycle. 2006;5:1496–8.PubMedCrossRef Azzalin CM, Lingner J. The double life of upf1 in rna and DNA stability pathways. Cell Cycle. 2006;5:1496–8.PubMedCrossRef
22.
go back to reference Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E. Nonsense-mediated mrna decay in drosophila: At the intersection of the yeast and mammalian pathways. EMBO J. 2003;22:3960–70.PubMedPubMedCentralCrossRef Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E. Nonsense-mediated mrna decay in drosophila: At the intersection of the yeast and mammalian pathways. EMBO J. 2003;22:3960–70.PubMedPubMedCentralCrossRef
23.
go back to reference He F, Brown AH, Jacobson A. Upf1p, nmd2p, and upf3p are interacting components of the yeast nonsense-mediated mrna decay pathway. Mol Cell Biol. 1997;17:1580–94.PubMedPubMedCentralCrossRef He F, Brown AH, Jacobson A. Upf1p, nmd2p, and upf3p are interacting components of the yeast nonsense-mediated mrna decay pathway. Mol Cell Biol. 1997;17:1580–94.PubMedPubMedCentralCrossRef
24.
go back to reference Cui Y, Hagan KW, Zhang S, Peltz SW. Identification and characterization of genes that are required for the accelerated degradation of mrnas containing a premature translational termination codon. Genes Dev. 1995;9:423–36.PubMedCrossRef Cui Y, Hagan KW, Zhang S, Peltz SW. Identification and characterization of genes that are required for the accelerated degradation of mrnas containing a premature translational termination codon. Genes Dev. 1995;9:423–36.PubMedCrossRef
25.
go back to reference Cheng Z, Morisawa G, Song H. Biochemical characterization of human upf1 helicase. Methods Mol Biol. 2010;587:327–38.PubMedCrossRef Cheng Z, Morisawa G, Song H. Biochemical characterization of human upf1 helicase. Methods Mol Biol. 2010;587:327–38.PubMedCrossRef
26.
go back to reference Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, et al. Binding of a novel smg-1-upf1-erf1-erf3 complex (surf) to the exon junction complex triggers upf1 phosphorylation and nonsense-mediated mrna decay. Genes Dev. 2006;20:355–67.PubMedPubMedCentralCrossRef Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, et al. Binding of a novel smg-1-upf1-erf1-erf3 complex (surf) to the exon junction complex triggers upf1 phosphorylation and nonsense-mediated mrna decay. Genes Dev. 2006;20:355–67.PubMedPubMedCentralCrossRef
27.
go back to reference Bhattacharya A, Czaplinski K, Trifillis P, He F, Jacobson A, Peltz SW. Characterization of the biochemical properties of the human upf1 gene product that is involved in nonsense-mediated mrna decay. RNA. 2000;6:1226–35.PubMedPubMedCentralCrossRef Bhattacharya A, Czaplinski K, Trifillis P, He F, Jacobson A, Peltz SW. Characterization of the biochemical properties of the human upf1 gene product that is involved in nonsense-mediated mrna decay. RNA. 2000;6:1226–35.PubMedPubMedCentralCrossRef
28.
go back to reference Mendell JT, ap Rhys CM, Dietz HC. Separable roles for rent1/hupf1 in altered splicing and decay of nonsense transcripts. Science. 2002;298:419–22.PubMedCrossRef Mendell JT, ap Rhys CM, Dietz HC. Separable roles for rent1/hupf1 in altered splicing and decay of nonsense transcripts. Science. 2002;298:419–22.PubMedCrossRef
Metadata
Title
The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma
Authors
Lei Chang
Cuicui Li
Tao Guo
Haitao Wang
Weijie Ma
Yufeng Yuan
Quanyan Liu
Qifa Ye
Zhisu Liu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2016
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0286-2

Other articles of this Issue 1/2016

Journal of Experimental & Clinical Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine