Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research

CMTM4 is frequently downregulated and functions as a tumour suppressor in clear cell renal cell carcinoma

Authors: Ting Li, Yingying Cheng, Pingzhang Wang, Wenyan Wang, Fengzhan Hu, Xiaoning Mo, Hongxia Lv, Tao Xu, Wenling Han

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is a gene family involved in multiple malignancies. CMTM4 is a member of this family and is located at chromosome 16q22.1, a locus that harbours a number of tumour suppressor genes. It has been defined as a regulator of cell cycle and division in HeLa cells; however, its roles in tumourigenesis remain poorly studied.

Methods

An integrated bioinformatics analysis based on the array data from the GEO database was conducted to view the differential expression of CMTM4 across multiple cancers and their corresponding control tissues. Primary clear cell renal cell carcinoma (ccRCC) and the paired adjacent non-tumour tissues were then collected to examine the expression of CMTM4 by western blotting, immunohistochemistry, and quantitative RT-PCR. The ccRCC cell lines A498 and 786-O and the normal renal tubular epithelial cell line HK-2 were also tested for CMTM4 expression by western blotting. Cell Counting Kit-8 (CCK-8) and viable cell counting assays were used to delineate the growth curves of 786-O cells after CMTM4 overexpression or knockdown. Wound healing and transwell assays were performed to assess the cells’ ability to migrate. The effects of CMTM4 on cellular apoptosis and cell cycle progression were analysed by flow cytometry, and cell cycle hallmarks were detected by western blotting and RT-PCR. The xenograft model in nude mice was used to elucidate the function of CMTM4 in tumourigenesis ex vivo.

Results

By omic data analysis, we found a substantial downregulation of CMTM4 in ccRCC. Western blotting then confirmed that CMTM4 was dramatically reduced in 86.9 % (53/61) of ccRCC tissues compared with the paired adjacent non-tumour tissues, as well as in the 786-O and A498 ccRCC cell lines. Restoration of CMTM4 significantly suppressed 786-O cell growth by inducing G2/M cell cycle arrest and p21 upregulation, and cell migration was also inhibited. However, knockdown of CMTM4 led to a completely opposite effect on these cell behaviours. Overexpression of CMTM4 also markedly inhibited the tumour xenograft growth in nude mice.

Conclusions

CMTM4 is downregulated and exhibits tumour-suppressor activities in ccRCC, and could be exploited as a target for ccRCC treatment.
Literature
1.
go back to reference Busch J, Ralla B, Jung M, Wotschofsky Z, Trujillo-Arribas E, Schwabe P, et al. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res. 2015;34:61.PubMedCentralCrossRefPubMed Busch J, Ralla B, Jung M, Wotschofsky Z, Trujillo-Arribas E, Schwabe P, et al. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res. 2015;34:61.PubMedCentralCrossRefPubMed
2.
go back to reference Zhuang J, Tu X, Cao K, Guo S, Mao X, Pan J, et al. The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma. J Exp Clin Cancer Res. 2014;33:25.PubMedCentralCrossRefPubMed Zhuang J, Tu X, Cao K, Guo S, Mao X, Pan J, et al. The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma. J Exp Clin Cancer Res. 2014;33:25.PubMedCentralCrossRefPubMed
3.
go back to reference Leibovich BC, Lohse CM, Crispen PL, Boorjian SA, Thompson RH, Blute ML, et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol. 2010;183:1309–15.CrossRefPubMed Leibovich BC, Lohse CM, Crispen PL, Boorjian SA, Thompson RH, Blute ML, et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol. 2010;183:1309–15.CrossRefPubMed
4.
go back to reference Grimm MO, Wolff I, Zastrow S, Frohner M, Wirth M. Advances in renal cell carcinoma treatment. Ther Adv Urol. 2010;2:11–7.PubMedCentralPubMed Grimm MO, Wolff I, Zastrow S, Frohner M, Wirth M. Advances in renal cell carcinoma treatment. Ther Adv Urol. 2010;2:11–7.PubMedCentralPubMed
5.
go back to reference Han W, Lou Y, Tang J, Zhang Y, Chen Y, Li Y, et al. Molecular cloning and characterization of chemokine-like factor 1 (CKLF1), a novel human cytokine with unique structure and potential chemotactic activity. Biochem J. 2001;357:127–35.PubMedCentralCrossRefPubMed Han W, Lou Y, Tang J, Zhang Y, Chen Y, Li Y, et al. Molecular cloning and characterization of chemokine-like factor 1 (CKLF1), a novel human cytokine with unique structure and potential chemotactic activity. Biochem J. 2001;357:127–35.PubMedCentralCrossRefPubMed
6.
go back to reference Han W, Ding P, Xu M, Wang L, Rui M, Shi S, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics. 2003;81:609–17.CrossRefPubMed Han W, Ding P, Xu M, Wang L, Rui M, Shi S, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics. 2003;81:609–17.CrossRefPubMed
7.
go back to reference Chowdhury MH, Nagai A, Terashima M, Sheikh A, Murakawa Y, Kobayashi S, et al. Chemokine-like factor expression in the idiopathic inflammatory myopathies. Acta Neurol Scand. 2008;118:106–14.CrossRefPubMed Chowdhury MH, Nagai A, Terashima M, Sheikh A, Murakawa Y, Kobayashi S, et al. Chemokine-like factor expression in the idiopathic inflammatory myopathies. Acta Neurol Scand. 2008;118:106–14.CrossRefPubMed
8.
go back to reference Tian L, Li W, Wang J, Zhang Y, Zheng Y, Qi H, et al. The CKLF1-C19 peptide attenuates allergic lung inflammation by inhibiting CCR3- and CCR4-mediated chemotaxis in a mouse model of asthma. Allergy. 2011;66:287–97.CrossRefPubMed Tian L, Li W, Wang J, Zhang Y, Zheng Y, Qi H, et al. The CKLF1-C19 peptide attenuates allergic lung inflammation by inhibiting CCR3- and CCR4-mediated chemotaxis in a mouse model of asthma. Allergy. 2011;66:287–97.CrossRefPubMed
9.
go back to reference Zheng Y, Guo C, Zhang Y, Qi H, Sun Q, Xu E, et al. Alleviation of murine allergic rhinitis by C19, a C-terminal peptide of chemokine-like factor 1 (CKLF1). Int Immunopharmacol. 2011;11:2188–93.CrossRefPubMed Zheng Y, Guo C, Zhang Y, Qi H, Sun Q, Xu E, et al. Alleviation of murine allergic rhinitis by C19, a C-terminal peptide of chemokine-like factor 1 (CKLF1). Int Immunopharmacol. 2011;11:2188–93.CrossRefPubMed
10.
go back to reference Tan Y, Wang Y, Li L, Xia J, Peng S, He Y. Chemokine-like factor 1-derived C-terminal peptides induce the proliferation of dermal microvascular endothelial cells in psoriasis. PLoS One. 2015;10:e0125073.PubMedCentralCrossRefPubMed Tan Y, Wang Y, Li L, Xia J, Peng S, He Y. Chemokine-like factor 1-derived C-terminal peptides induce the proliferation of dermal microvascular endothelial cells in psoriasis. PLoS One. 2015;10:e0125073.PubMedCentralCrossRefPubMed
11.
go back to reference Miyazaki A, Yogosawa S, Murakami A, Kitamura D. Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS One. 2012;7:e31829.PubMedCentralCrossRefPubMed Miyazaki A, Yogosawa S, Murakami A, Kitamura D. Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS One. 2012;7:e31829.PubMedCentralCrossRefPubMed
12.
go back to reference Shi S, Rui M, Han W, Wang Y, Qiu X, Ding P, et al. CKLFSF2 is highly expressed in testis and can be secreted into the seminiferous tubules. Int J Biochem Cell Biol. 2005;37:1633–40.CrossRefPubMed Shi S, Rui M, Han W, Wang Y, Qiu X, Ding P, et al. CKLFSF2 is highly expressed in testis and can be secreted into the seminiferous tubules. Int J Biochem Cell Biol. 2005;37:1633–40.CrossRefPubMed
13.
go back to reference Liu G, Xin ZC, Chen L, Tian L, Yuan YM, Song WD, et al. Expression and localization of CKLFSF2 in human spermatogenesis. Asian J Androl. 2007;9:189–98.CrossRefPubMed Liu G, Xin ZC, Chen L, Tian L, Yuan YM, Song WD, et al. Expression and localization of CKLFSF2 in human spermatogenesis. Asian J Androl. 2007;9:189–98.CrossRefPubMed
14.
go back to reference Wang Y, Li T, Qiu X, Mo X, Zhang Y, Song Q, et al. CMTM3 can affect the transcription activity of androgen receptor and inhibit the expression level of PSA in LNCaP cells. Biochem Biophys Res Commun. 2008;371:54–8.CrossRefPubMed Wang Y, Li T, Qiu X, Mo X, Zhang Y, Song Q, et al. CMTM3 can affect the transcription activity of androgen receptor and inhibit the expression level of PSA in LNCaP cells. Biochem Biophys Res Commun. 2008;371:54–8.CrossRefPubMed
15.
go back to reference Jin C, Ding P, Wang Y, Ma D. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 2005;579:6375–82.CrossRefPubMed Jin C, Ding P, Wang Y, Ma D. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 2005;579:6375–82.CrossRefPubMed
16.
go back to reference Shao L, Cui Y, Li H, Liu Y, Zhao H, Wang Y, et al. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res. 2007;13:5756–62.CrossRefPubMed Shao L, Cui Y, Li H, Liu Y, Zhao H, Wang Y, et al. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res. 2007;13:5756–62.CrossRefPubMed
17.
go back to reference Shao L, Guo X, Plate M, Li T, Wang Y, Ma D, et al. CMTM5-v1 induces apoptosis in cervical carcinoma cells. Biochem Biophys Res Commun. 2009;379:866–71.CrossRefPubMed Shao L, Guo X, Plate M, Li T, Wang Y, Ma D, et al. CMTM5-v1 induces apoptosis in cervical carcinoma cells. Biochem Biophys Res Commun. 2009;379:866–71.CrossRefPubMed
18.
go back to reference Wang Y, Li J, Cui Y, Li T, Ng KM, Geng H, et al. CMTM3, located at the critical tumor suppressor locus 16q22.1, is silenced by CpG methylation in carcinomas and inhibits tumor cell growth through inducing apoptosis. Cancer Res. 2009;69:5194–201.CrossRefPubMed Wang Y, Li J, Cui Y, Li T, Ng KM, Geng H, et al. CMTM3, located at the critical tumor suppressor locus 16q22.1, is silenced by CpG methylation in carcinomas and inhibits tumor cell growth through inducing apoptosis. Cancer Res. 2009;69:5194–201.CrossRefPubMed
19.
go back to reference Guo X, Li T, Wang Y, Shao L, Zhang Y, Ma D, et al. CMTM5 induces apoptosis of pancreatic cancer cells and has synergistic effects with TNF-alpha. Biochem Biophys Res Commun. 2009;387:139–42.CrossRefPubMed Guo X, Li T, Wang Y, Shao L, Zhang Y, Ma D, et al. CMTM5 induces apoptosis of pancreatic cancer cells and has synergistic effects with TNF-alpha. Biochem Biophys Res Commun. 2009;387:139–42.CrossRefPubMed
20.
go back to reference Li P, Liu K, Li L, Yang M, Gao W, Feng J, et al. Reduced CMTM5 expression correlates with carcinogenesis in human epithelial ovarian cancer. Int J Gynecol Cancer. 2011;21:1248–55.PubMed Li P, Liu K, Li L, Yang M, Gao W, Feng J, et al. Reduced CMTM5 expression correlates with carcinogenesis in human epithelial ovarian cancer. Int J Gynecol Cancer. 2011;21:1248–55.PubMed
21.
go back to reference Su Y, Lin Y, Zhang L, Liu B, Yuan W, Mo X, et al. CMTM3 inhibits cell migration and invasion and correlates with favorable prognosis in gastric cancer. Cancer Sci. 2014;105:26–34.PubMedCentralCrossRefPubMed Su Y, Lin Y, Zhang L, Liu B, Yuan W, Mo X, et al. CMTM3 inhibits cell migration and invasion and correlates with favorable prognosis in gastric cancer. Cancer Sci. 2014;105:26–34.PubMedCentralCrossRefPubMed
22.
go back to reference Zhang H, Nan X, Li X, Chen Y, Zhang J, Sun L, et al. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma. Biochem Biophys Res Commun. 2014;447:304–10.CrossRefPubMed Zhang H, Nan X, Li X, Chen Y, Zhang J, Sun L, et al. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma. Biochem Biophys Res Commun. 2014;447:304–10.CrossRefPubMed
23.
go back to reference Li H, Li J, Su Y, Fan Y, Guo X, Li L, et al. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth. Oncogene. 2014;33:3109–18.CrossRefPubMed Li H, Li J, Su Y, Fan Y, Guo X, Li L, et al. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth. Oncogene. 2014;33:3109–18.CrossRefPubMed
24.
go back to reference Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B, et al. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma. PLoS One. 2014;9:e115835.PubMedCentralCrossRefPubMed Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B, et al. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma. PLoS One. 2014;9:e115835.PubMedCentralCrossRefPubMed
25.
go back to reference Delic S, Thuy A, Schulze M, Proescholdt MA, Dietrich P, Bosserhoff AK, et al. Systematic investigation of CMTM family genes suggests relevance to glioblastoma pathogenesis and CMTM1 and CMTM3 as priority targets. Genes Chromosomes Cancer. 2015;54:433–43.CrossRefPubMed Delic S, Thuy A, Schulze M, Proescholdt MA, Dietrich P, Bosserhoff AK, et al. Systematic investigation of CMTM family genes suggests relevance to glioblastoma pathogenesis and CMTM1 and CMTM3 as priority targets. Genes Chromosomes Cancer. 2015;54:433–43.CrossRefPubMed
26.
go back to reference Downing TE, Oktay MH, Fazzari MJ, Montagna C. Prognostic and predictive value of 16p12.1 and 16q22.1 copy number changes in human breast cancer. Cancer Genet Cytogenet. 2010;198:52–61.CrossRefPubMed Downing TE, Oktay MH, Fazzari MJ, Montagna C. Prognostic and predictive value of 16p12.1 and 16q22.1 copy number changes in human breast cancer. Cancer Genet Cytogenet. 2010;198:52–61.CrossRefPubMed
27.
go back to reference Keck B, Ellmann C, Stoehr R, Weigelt K, Goebell PJ, Kunath F, et al. Comparative genomic hybridization shows complex genomic changes of plasmacytoid urothelial carcinoma. Urol Oncol. 2014;32:1234–9.CrossRefPubMed Keck B, Ellmann C, Stoehr R, Weigelt K, Goebell PJ, Kunath F, et al. Comparative genomic hybridization shows complex genomic changes of plasmacytoid urothelial carcinoma. Urol Oncol. 2014;32:1234–9.CrossRefPubMed
28.
go back to reference Sun Q, Yang YM, Yu SH, Zhang YX, He XG, Sun SS, et al. Covariation of copy number located at 16q22.1: new evidence in mammary ductal carcinoma. Oncol Rep. 2012;28:2156–62.PubMed Sun Q, Yang YM, Yu SH, Zhang YX, He XG, Sun SS, et al. Covariation of copy number located at 16q22.1: new evidence in mammary ductal carcinoma. Oncol Rep. 2012;28:2156–62.PubMed
29.
go back to reference Fu L, Dong SS, Xie YW, Tai LS, Chen L, Kong KL, et al. Down-regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma. Hepatology. 2010;51:1624–34.CrossRefPubMed Fu L, Dong SS, Xie YW, Tai LS, Chen L, Kong KL, et al. Down-regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma. Hepatology. 2010;51:1624–34.CrossRefPubMed
30.
go back to reference Costa AR, Vasudevan A, Krepischi A, Rosenberg C, Chauffaille ML. Single-nucleotide polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia. Med Oncol. 2013;30:579.CrossRefPubMed Costa AR, Vasudevan A, Krepischi A, Rosenberg C, Chauffaille ML. Single-nucleotide polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia. Med Oncol. 2013;30:579.CrossRefPubMed
31.
go back to reference Czarnecka KH, Migdalska-Sek M, Antczak A, Pastuszak-Lewandoska D, Kordiak J, Nawrot E, et al. Allelic imbalance in 1p, 7q, 9p, 11p, 12q and 16q regions in non-small cell lung carcinoma and its clinical association: a pilot study. Mol Biol Rep. 2013;40:6671–84.PubMedCentralCrossRefPubMed Czarnecka KH, Migdalska-Sek M, Antczak A, Pastuszak-Lewandoska D, Kordiak J, Nawrot E, et al. Allelic imbalance in 1p, 7q, 9p, 11p, 12q and 16q regions in non-small cell lung carcinoma and its clinical association: a pilot study. Mol Biol Rep. 2013;40:6671–84.PubMedCentralCrossRefPubMed
32.
go back to reference Brys M, Migdalska-Sek M, Pastuszak-Lewandoska D, Forma E, Czarnecka K, Domanska D, et al. Diagnostic value of DNA alteration: loss of heterozygosity or allelic imbalance-promising for molecular staging of prostate cancers. Med Oncol. 2013;30:391.PubMedCentralCrossRefPubMed Brys M, Migdalska-Sek M, Pastuszak-Lewandoska D, Forma E, Czarnecka K, Domanska D, et al. Diagnostic value of DNA alteration: loss of heterozygosity or allelic imbalance-promising for molecular staging of prostate cancers. Med Oncol. 2013;30:391.PubMedCentralCrossRefPubMed
33.
go back to reference Czarnecka K, Pastuszak-Lewandoska D, Migdalska-Sek M, Nawrot E, Brzezinski J, Dedecjus M, et al. Aberrant methylation as a main mechanism of TSGs silencing in PTC. Front Biosci (Elite Ed). 2011;3:137–57.CrossRef Czarnecka K, Pastuszak-Lewandoska D, Migdalska-Sek M, Nawrot E, Brzezinski J, Dedecjus M, et al. Aberrant methylation as a main mechanism of TSGs silencing in PTC. Front Biosci (Elite Ed). 2011;3:137–57.CrossRef
34.
go back to reference Plate M, Li T, Wang Y, Mo X, Zhang Y, Ma D, et al. Identification and characterization of CMTM4, a novel gene with inhibitory effects on HeLa cell growth through Inducing G2/M phase accumulation. Mol Cells. 2010;29:355–61.CrossRefPubMed Plate M, Li T, Wang Y, Mo X, Zhang Y, Ma D, et al. Identification and characterization of CMTM4, a novel gene with inhibitory effects on HeLa cell growth through Inducing G2/M phase accumulation. Mol Cells. 2010;29:355–61.CrossRefPubMed
35.
go back to reference Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature. 2004;432:1036–40.CrossRefPubMed Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature. 2004;432:1036–40.CrossRefPubMed
36.
38.
go back to reference Li T, Guo X, Wang Y, Plate M, Shao L, Song Q, et al. Preparation, purification and characterization of the polyclonal antibody against human CMTM4. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008;24:41–4.PubMed Li T, Guo X, Wang Y, Plate M, Shao L, Song Q, et al. Preparation, purification and characterization of the polyclonal antibody against human CMTM4. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008;24:41–4.PubMed
39.
go back to reference Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cellcarcinoma cells in vitro and in vivo. J Exp Clin Cancer Res. 2012;31:22.PubMedCentralCrossRefPubMed Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cellcarcinoma cells in vitro and in vivo. J Exp Clin Cancer Res. 2012;31:22.PubMedCentralCrossRefPubMed
40.
go back to reference Wan Q, Dingerdissen H, Fan Y, Gulzar N, Pan Y, Wu TJ, et al. BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis. Database (Oxford). 2015; doi: 10.1093/database/bav019. Wan Q, Dingerdissen H, Fan Y, Gulzar N, Pan Y, Wu TJ, et al. BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis. Database (Oxford). 2015; doi: 10.​1093/​database/​bav019.
41.
go back to reference Cmielova J, Rezacova M. p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem. 2011;112:3502–6.CrossRefPubMed Cmielova J, Rezacova M. p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem. 2011;112:3502–6.CrossRefPubMed
42.
go back to reference Weinberg WC, Denning MF. P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med. 2002;13:453–64.CrossRefPubMed Weinberg WC, Denning MF. P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med. 2002;13:453–64.CrossRefPubMed
43.
go back to reference Ishimaru T, Lau J, Jackson AL, Modiano JF, Weiss RH. Pharmacological inhibition of cyclin dependent kinases causes p53 dependent apoptosis in renal cell carcinoma. J Urol. 2010;184:2143–9.CrossRefPubMed Ishimaru T, Lau J, Jackson AL, Modiano JF, Weiss RH. Pharmacological inhibition of cyclin dependent kinases causes p53 dependent apoptosis in renal cell carcinoma. J Urol. 2010;184:2143–9.CrossRefPubMed
Metadata
Title
CMTM4 is frequently downregulated and functions as a tumour suppressor in clear cell renal cell carcinoma
Authors
Ting Li
Yingying Cheng
Pingzhang Wang
Wenyan Wang
Fengzhan Hu
Xiaoning Mo
Hongxia Lv
Tao Xu
Wenling Han
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0236-4

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine