Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research Article

The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo

Authors: Min-Wu Chao, Mei-Jung Lai, Jing-Ping Liou, Ya-Ling Chang, Jing-Chi Wang, Shiow-Lin Pan, Che-Ming Teng

Published in: Journal of Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

Combination therapy is a key strategy for minimizing drug resistance, a common problem in cancer therapy. The microtubule-depolymerizing agent vincristine is widely used in the treatment of acute leukemia. In order to decrease toxicity and chemoresistance of vincristine, this study will investigate the effects of combination vincristine and vorinostat (suberoylanilide hydroxamic acid (SAHA)), a pan-histone deacetylase inhibitor, on human acute T cell lymphoblastic leukemia cells.

Methods

Cell viability experiments were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distributions as well as mitochondria membrane potential were analyzed by flow cytometry. In vitro tubulin polymerization assay was used to test tubulin assembly, and immunofluorescence analysis was performed to detect microtubule distribution and morphology. In vivo effect of the combination was evaluated by a MOLT-4 xenograft model. Statistical analysis was assessed by Bonferroni’s t test.

Results

Cell viability showed that the combination of vincristine and SAHA exhibited greater cytotoxicity with an IC50 value of 0.88 nM, compared to each drug alone, 3.3 and 840 nM. This combination synergically induced G2/M arrest, followed by an increase in cell number at the sub-G1 phase and caspase activation. Moreover, the results of vincristine combined with an HDAC6 inhibitor (tubastatin A), which acetylated α-tubulin, were consistent with the effects of vincristine/SAHA co-treatment, thus suggesting that SAHA may alter microtubule dynamics through HDAC6 inhibition.

Conclusion

These findings indicate that the combination of vincristine and SAHA on T cell leukemic cells resulted in a change in microtubule dynamics contributing to M phase arrest followed by induction of the apoptotic pathway. These data suggest that the combination effect of vincristine/SAHA could have an important preclinical basis for future clinical trial testing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest. 2005;23(3):264–73.PubMedCrossRef Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest. 2005;23(3):264–73.PubMedCrossRef
5.
go back to reference Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999;11(1):81–94.PubMedCrossRef Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999;11(1):81–94.PubMedCrossRef
11.
go back to reference Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002;21(24):6820–31.PubMedCentralPubMedCrossRef Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002;21(24):6820–31.PubMedCentralPubMedCrossRef
13.
14.
go back to reference Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281(19):13548–58. doi:10.1074/jbc.M510023200.PubMedCrossRef Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281(19):13548–58. doi:10.​1074/​jbc.​M510023200.PubMedCrossRef
15.
go back to reference Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.PubMedCrossRef Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.PubMedCrossRef
26.
go back to reference Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992;102(Pt 3):401–16.PubMed Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992;102(Pt 3):401–16.PubMed
27.
go back to reference Bulinski JC, Richards JE, Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol. 1988;106(4):1213–20.PubMedCrossRef Bulinski JC, Richards JE, Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol. 1988;106(4):1213–20.PubMedCrossRef
28.
go back to reference Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, et al. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002;1(11):937–41.PubMed Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, et al. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002;1(11):937–41.PubMed
29.
31.
go back to reference Noh EJ, Lee JS. Functional interplay between modulation of histone deacetylase activity and its regulatory role in G2-M transition. Biochem Biophys Res Commun. 2003;310(2):267–73.PubMedCrossRef Noh EJ, Lee JS. Functional interplay between modulation of histone deacetylase activity and its regulatory role in G2-M transition. Biochem Biophys Res Commun. 2003;310(2):267–73.PubMedCrossRef
32.
33.
go back to reference Shinwari Z, Manogaran PS, Alrokayan SA, Al-Hussein KA, Aboussekhra A. Vincristine and lomustine induce apoptosis and p21(WAF1) up-regulation in medulloblastoma and normal human epithelial and fibroblast cells. J Neuro-Oncol. 2008;87(2):123–32. doi:10.1007/s11060-007-9502-4.CrossRef Shinwari Z, Manogaran PS, Alrokayan SA, Al-Hussein KA, Aboussekhra A. Vincristine and lomustine induce apoptosis and p21(WAF1) up-regulation in medulloblastoma and normal human epithelial and fibroblast cells. J Neuro-Oncol. 2008;87(2):123–32. doi:10.​1007/​s11060-007-9502-4.CrossRef
37.
go back to reference Dowling M, Voong KR, Kim M, Keutmann MK, Harris E, Kao GD. Mitotic spindle checkpoint inactivation by trichostatin a defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents. Cancer Biol Ther. 2005;4(2):197–206.PubMedCrossRef Dowling M, Voong KR, Kim M, Keutmann MK, Harris E, Kao GD. Mitotic spindle checkpoint inactivation by trichostatin a defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents. Cancer Biol Ther. 2005;4(2):197–206.PubMedCrossRef
Metadata
Title
The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo
Authors
Min-Wu Chao
Mei-Jung Lai
Jing-Ping Liou
Ya-Ling Chang
Jing-Chi Wang
Shiow-Lin Pan
Che-Ming Teng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2015
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0176-7

Other articles of this Issue 1/2015

Journal of Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine